Bingham plastics exhibit complex behaviors, depending on both geometrical and rheological factors, and are difficult to characterize systematically. This is particularly true in the case of transient flows, where solidlike and fluidlike behaviors coexist in an intermittent fashion. The aim of this contribution is to study the slump of Bingham columns under gravity, while varying systematically and independently both the geometry of the system and the rheological parameters. To do so, numerical experiments are carried out in two dimensions with a non-Newtonian Navier–Stokes code, the Gerris flow solver, using a volume-of-fluid approach. We are able to determine the slump height and the spreading of the column after motion ceased. These characteristics are related to the rheological properties and initial shape through scaling relationships. The results are compared with previous scalings and prediction from the literature. A discussion ensues on the importance of the normalization choice and of unambiguous discrimination between geometrical and material factors.

1.
Balmforth
,
N. J.
, and
R. R.
Kerswell
, “
Granular collapse in two dimensions
,”
J. Fluid Mech.
538
,
399
428
(
2005
).
2.
Balmforth
,
N. J.
,
R. V.
Craster
,
P.
Peronac
,
A. C.
Rustd
, and
R.
Sassie
, “
Viscoplastic dam breaks and the Bostwick consistometer
,”
J. Non-Newtonian Fluid Mech.
142
(
1–3
),
63
78
(
2007
).
3.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley-Interscience
,
New York
,
1987
).
4.
Chamberlain
,
J. A.
,
D. J.
Horrobin
,
K. A.
Landman
, and
J. E.
Sader
, “
Upper and lower bounds for incipient failure in a body under gravitational loading
,”
J. Appl. Mech.
71
,
586
589
(
2004
).
5.
Davidson
,
M. R.
,
N. H.
Khan
, and
Y. L.
Yeow
, “
Collapse of a cylinder of a Bingham fluid
,”
ANZIAM J.
42
(
E
),
C499
C517
(
2000
).
6.
Dubash
,
N.
,
N. J.
Balmforth
,
A. C.
Slima
, and
S.
Cochard
, “
What is the final shape of a viscoplastic slump?
,”
J. Non-Newtonian Fluid Mech.
158
(
13
),
91
100
(
2009
).
7.
Dufour
,
F.
, and
G.
Pijaudier-Cabot
, “
Numerical modelling of concrete flow: Homogeneous approach
,”
Int. J. Numer. Analyt. Meth. Geomech.
29
(
4
),
395
416
(
2005
).
8.
Ferraris
,
C. F.
, and
F.
de Larrard
, “
Modified slump test to measure rheological parameters of fresh concrete
,”
Cem., Concr., Aggregates
20
(
2
),
241
247
(
1998
).
9.
Hogg
,
A. J.
, and
G. P.
Matson
, “
Slumps of viscoplastic fluids on slopes
,”
J. Non-Newtonian Fluid Mech.
158
(
13
),
101
112
(
2009
).
10.
Jop
,
P.
,
Y.
Forterre
, and
O.
Pouliquen
, “
A rheology for dense granular flows
,”
Nature
441
,
727
730
(
2006
).
11.
Lagrée
,
P.-Y.
,
L.
Staron
, and
S.
Popinet
, “
The granular column collapse as a continuum: Validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology
,”
J. Fluid Mech.
686
,
378
408
(
2011
).
12.
Lajeunesse
,
E.
,
A.
Mangeney-Castelneau
, and
J.-P.
Vilotte
, “
Spreading of a granular mass on an horizontal plane
,”
Phys. Fluids
16
,
2371
2381
(
2004
).
13.
Lube
,
G.
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
M. A.
Hallworth
, “
Axisymmetric collapses of granular columns
,”
J. Fluid Mech.
508
,
175
199
(
2004
).
14.
Pashias
,
N.
,
D. V.
Boger
,
J.
Summers
, and
D. J.
Glenister
, “
A fifty cent rheometer for yield stress measurement
,”
J. Rheol.
40
(
6
),
1179
1189
(
1996
).
15.
Piau
,
J.-M.
, “
Axisymmetric slump and spreading of cohesive plastic soft materials: A yield stress measurement by consisto-rheometry
,”
J. Rheol.
49
,
1253
1276
(
2005
).
16.
Popinet
,
S.
, “
Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries
,”
J. Comput. Phys.
190
(
2
),
572
600
(
2003
).
17.
Popinet
,
S.
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
5866
(
2009
).
19.
Roussel
,
N.
,
C.
Stefani
, and
R.
Leroy
, “
From mini-cone test to Abrams cone test: Measurement of cement-based materials yield stress using slump tests
,”
Cem. Concr. Res.
35
(
5
),
817
822
(
2005
).
18.
Roussel
,
N.
, and
P.
Coussot
, “
“Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow
,”
J. Rheol.
49
,
705
718
(
2005
).
20.
Sader
,
J. E.
, and
M. R.
Davidson
, “
Scaling behavior for gravity induced flow of a yield stress material
,”
J. Rheol.
49
,
105
112
(
2005
).
21.
Scardovelli
,
R.
, and
S.
Zaleski
, “
Direct numerical simulation of free-surface and interfacial flow
,”
Annu. Rev. Fluid Mech.
31
,
567
603
(
1999
).
22.
Schowalter
,
W. R.
, and
G.
Christensen
, “
Toward a rationalization of the slump test for fresh concrete: Comparisons of calculations and experiments
,”
J. Rheol.
42
,
865
870
(
1998
).
23.
Staron
,
L.
, and
E. J.
Hinch
, “
Study of the collapse of granular columns using 2D discrete-grains simulation
,”
J. Fluid Mech.
545
,
1
27
(
2005
).
24.
Staron
,
L.
, and
E. J.
Hinch
, “
The spreading of a granular mass: Role of grain properties and initial conditions
,”
Granular Matter
9
,
205
217
(
2007
).
25.
Staron
,
L.
,
P.-Y.
Lagrée
, and
S.
Popinet
, “
The granular silo as a continuum plastic flow: The hour-glass vs the clepsydra
,”
Phys. Fluids
24
(
10
),
103301
(
2012
).
26.
Tallarico
,
A.
, and
M.
Dragoni
, “
A three-dimensional Bingham model for channeled lava flows
,”
J. Geophys. Res.
105
(
B11
),
25969
25980
, doi: (
2000
).
27.
Tattersall
,
G. H.
, and
P. G. F.
Banfill
,
The Rheology of Fresh Concrete
(
Pitman Advanced Publishing Program
,
1983
).
29.
Whipple
,
K. X.
, “
Open-channel flow of Bingham fluids: Applications in debris-flow research
,”
J. Geol.
105
(
2
),
243
262
(
1997
).
30.
Zenit
,
R.
, “
Computer simulations of the collapse of a granular column
,”
Phys. Fluids
17
,
031703
(
2005
).
You do not currently have access to this content.