Recently, we explored the effects of weak fluid elasticity (El ≪ 1) on the stability of co- and counter-rotating Taylor–Couette (TC) flows [Dutcher and Muller, J. Rheol. 55(6), 1271–1295 (2011)], where accessible flow states were primarily governed by the dominant inertial forces, yet modified by the weaker elastic forces. Here, the study of the inertial–elastic TC problem is expanded to El near unity, illuminating the effects of increasing the elastic forces on the inertially driven instabilities. A polyethylene oxide solution was carefully chosen to have optimal rheological properties and exhibit limited shear and oxidative degradation. The sequence of transitions to turbulence found here is notably different from that observed previously for either Newtonian or low-elasticity fluids. As El approaches order 1, laminar and turbulent flows are separated by only two coherent flow states: Standing vortices and disordered rotating standing waves. In contrast to our experiments at lower El, we also observe flow state hysteresis. In addition, the final turbulent flow state was not turbulent Taylor vortices (TTV) as seen with Newtonian and weakly elastic fluids, but rather a state we refer to as elastically dominated turbulence, which occurs at a significantly lower Reynolds number than TTV. Stability mappings involving rotation of the outer cylinder show that the flow states and transitions depend on the amount of counter- or co-rotation. As the degree of counter rotation increased, greater deviations from Newtonian and low El behavior were found, due to the presence of a nodal surface that changes the characteristic length scale of the flow.

1.
Al-Mubaiyedh
,
U. A.
,
R.
Sureshkumar
, and
B.
Khomami
, “
The effect of viscous heating on the stability of Taylor-Couette flow
,”
J. Fluid Mech.
462
,
111
132
(
2002
).
2.
Andereck
,
C. D.
,
R.
Dickman
, and
H. L.
Swinney
, “
New flows in a circular Couette system with co-rotating cylinders
,”
Phys. Fluids
26
(
6
),
1395
1401
(
1983
).
3.
Baer
,
S. M.
, and
E. M.
Gaekel
, “
Slow acceleration and deacceleration through a hopf bifurcation: Power ramps, target nucleation, and elliptic bursting
,”
Phys. Rev. E
78
,
036205
(
2008
).
4.
Baumert
,
B. M.
, and
S. J.
Muller
, “
Axisymmetric and non-axisymmetric elastic and inertio-elastic instabilities in Taylor-Couette flow
,”
J. Non-Newtonian Fluid Mech.
83
,
33
69
(
1999
).
5.
Bednar
,
F.
,
M. H.
De Oliveira
,
J.
Paris
, and
T. G. M.
van de Ven
, “
Transient entanglements and clusters in dilute polymer solutions
,”
J. Polym. Sci., Part B: Polym. Phys.
46
(
3
),
253
262
(
2008
).
6.
Burghelea
,
T.
,
E.
Segre
, and
V.
Steinberg
, “
Elastic turbulence in von Karman swirling flow between two disks
,”
Phys. Fluids
19
,
053104
(
2007
).
7.
Crumeyrolle
,
O.
,
I.
Mutabazi
, and
M.
Grisel
, “
Experimental study of inertioelastic Couette-Taylor instability modes in dilute and semidilute polymer solutions
,”
Phys. Fluids
14
(
5
),
1681
1688
(
2002
).
8.
Dutcher
,
C. S.
, and
S. J.
Muller
, “
Explicit analytic formulas for Newtonian Taylor-Couette primary instabilities
,”
Phys. Rev. E
75
(
4
),
047301
(
2007
).
9.
Dutcher
,
C. S.
, and
S. J.
Muller
, “
The effects of drag reducing polymers on flow stability: Insights from the Taylor-Couette problem
,”
Korea-Aust. Rheol. J.
21
(
4
),
213
223
(
2009a
).
10.
Dutcher
,
C. S.
, and
S. J.
Muller
, “
Spatio-temporal mode dynamics and higher order transitions in high aspect ratio Newtonian Taylor-Couette flows
,”
J. Fluid Mech.
641
,
85
113
(
2009b
).
11.
Dutcher
,
C. S.
, and
S. J.
Muller
, “
Effects of weak elasticity on the stability of high Reynolds number co- and counter-rotating Taylor-Couette flows
,”
J. Rheol.
55
(
6
),
1271
1295
(
2011
).
12.
Groisman
,
A.
, “
Experiments on the Couette-Taylor flow with dilute polymer solutions
,” M.S. thesis,
Weizmann Institute of Science
, Rehovot, Israel,
1993
.
13.
Groisman
,
A.
, and
V.
Steinberg
, “
Couette-Taylor flow in a dilute polymer solution
,”
Phys. Rev. Lett.
77
(
8
),
1480
1483
(
1996
).
14.
Groisman
,
A.
, and
V.
Steinberg
, “
Solitary vortex pairs in viscoelastic Couette flow
,”
Phys. Rev. Lett.
78
(
8
),
1460
1463
(
1997
).
15.
Groisman
,
A.
, and
V.
Steinberg
, “
Elastic vs. inertial instability in a polymer solution flow
,”
Europhys. Lett.
43
(
2
),
165
170
(
1998a
).
16.
Groisman
,
A.
, and
V.
Steinberg
, “
Mechanism of elastic instability in Couette flow of polymer solutions: Experiment
,”
Phys. Fluids
10
(
10
),
2451
2463
(
1998b
).
17.
Groisman
,
A.
, and
V.
Steinberg
, “
Elastic turbulence in a polymer solution flow
,”
Nature
405
(
6782
),
53
55
(
2000
).
18.
Jun
,
Y.
, and
V.
Steinberg
, “
Power and pressure fluctuations in elastic turbulence over a wide range of polymer concentrations
,”
Phys. Rev. Lett.
102
,
124503
(
2009
).
19.
Larson
,
R. G.
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
(
3
),
213
263
(
1992
).
20.
Larson
,
R. G.
,
E. S. G.
Shaqfeh
, and
S. J.
Muller
, “
A purely elastic instability in Taylor-Couette flow
,”
J. Fluid Mech.
218
,
573
600
(
1990
).
21.
Larson
,
R. G.
,
S. J.
Muller
, and
E. S. G.
Shaqfeh
, “
The effect of fluid rheology on the elastic Taylor-Couette instability
,”
J. Non-Newtonian Fluid Mech.
51
(
2
),
195
225
(
1994
).
22.
Muller
,
S. J.
, “
Elastically-influenced instabilities in Taylor-Couette and other flows with curved streamlines: A review
,”
Korea-Aust. Rheol. J.
20
(
3
),
117
125
(
2008
).
23.
Muller
,
S. J.
,
R. G.
Larson
, and
E. S. G.
Shaqfeh
, “
A purely elastic transition in Taylor-Couette flow
,”
Rheol. Acta
28
(
6
),
499
503
(
1989
).
24.
Ortiz
,
M.
,
D.
Dekee
, and
P. J.
Carreau
, “
Rheology of concentrated poly(ethylene oxide) solutions
,”
J. Rheol.
38
(
3
),
519
539
(
1994
).
25.
Park
,
K.
,
G. L.
Crawford
, and
R. J.
Donnelly
, “
Determination of transition in Couette flow in finite geometries
,”
Phys. Rev. Lett.
47
,
1448
1450
(
1981
).
26.
Pfister
,
G.
, and
U.
Gerdts
, “
Dynamics of Taylor wavy vortex flow
,”
Phys. Lett. A
83
(
1
),
23
25
(
1981
).
27.
Shaqfeh
,
E. S. G.
, “
Purely elastic instabilities in viscometric flows
,”
Annu. Rev. Fluid Mech.
28
,
129
185
(
1996
).
28.
Steinberg
,
V.
, and
A.
Groisman
, “
Elastic versus inertial instability in Couette-Taylor flow of a polymer solution: Review
,”
Philos. Mag. B
78
(
2
),
253
263
(
1998
).
29.
Thomas
,
D. G.
,
B.
Khomami
, and
R.
Sureshkumar
, “
Nonlinear dynamics of viscoelastic Taylor-Couette flow: Effect of elasticity on pattern selection, molecular conformation and drag
,”
J. Fluid Mech.
620
,
353
382
(
2009
).
30.
White
,
J. M.
, and
S. J.
Muller
, “
Viscous heating and the stability of Newtonian and viscoelastic Taylor-Couette flows
,”
Phys. Rev. Lett.
84
(
22
),
5130
5133
(
2000
).
31.
White
,
J. M.
, and
S. J.
Muller
, “
The role of thermal sensitivity of fluid properties, centrifugal destabilization, and nonlinear disturbances on the viscous heating instability in Newtonian Taylor-Couette flow
,”
Phys. Fluids
14
(
11
),
3880
3890
(
2002
).
32.
Xiao
,
Q.
,
T. T.
Lim
, and
Y. T.
Chew
, “
Effect of acceleration on the wavy Taylor vortex flow
,”
Exp. Fluids
32
,
639
644
(
2002
).
You do not currently have access to this content.