This study is concerned with the viscoelastic behavior of wood. The time dependency of the orthotropic compliance for beech wood is investigated by performing tensile (Te) and compressive (Co) creep experiments in all wood's orthotropic directions. Time evolution of the creep strain in the axial and lateral directions is recorded using the digital image correlation technique, to determine the time dependent Young's moduli and the Poisson's ratios needed for the calculation of the diagonal and nondiagonal elements of the viscoelastic compliance matrix. The results of this study demonstrate the viscoelastic character of wood, revealing the significant time influence on the mechanical behavior. The unequal time dependency of the Young's moduli and the Poisson's ratios obtained for the individual directions highlights the orthotropic nature of the viscoelastic compliance. Differences between the time dependent behavior for the compliance determined in Te and Co further indicate that the viscoelastic behavior of wood depends on the loading modality. Supported by the unequal evolution of the Te and Co creep strain, the results suggest that the time dependent stress–strain relationship of wood is essentially different in Te and Co. Poisson's ratio values, which are shown to increase with time in Te and decrease in Co, demonstrated this fact. The substantially different time dependency of the nondiagonal elements of the compliance matrix further emphasizes the complexity of the viscoelastic character of wood. Visualized by the time evolution of the corresponding nondiagonal elements ratio, differences between the Te and Co viscoelastic behavior become particularly visible in the time dependency of the orthotropic compliance asymmetry.

1.
Bazant
,
Z. P.
, and
S.
Meiri
, “
Measurement of compression creep of wood at humidity changes
,”
Wood Sci. Technol.
19
(
2
),
179
182
(
1985
).
2.
Bertoldi
,
K.
,
P. M.
Reis
,
S.
Willshaw
, and
T.
Mullin
, “
Negative Poisson's ratio behavior induced by an elastic instability
,”
Adv. Mater.
22
(
3
),
361
366
(
2010
).
3.
Bodig
,
J.
, and
B. A.
Jayne
,
Mechanics of Wood and Wood Composites
(
Krieger
,
Malabar
,
1993
).
4.
Bucur
,
V.
, and
R. R.
Archer
, “
Elastic constants for wood by an ultrasonic method
,”
Wood Sci. Technol.
18
(
4
),
255
265
(
1984
).
5.
Chappell
,
T. W.
, and
D. D.
Hamann
, “
Poisson's ratio and Young's modulus for apple flesh under compressive loading
,”
Trans. Am. Soc. Agric. Eng.
11
(
5
),
608
610
(
1968
).
6.
Chassagne
,
P.
,
E.
Bou-Said
,
J. F.
Jullien
, and
P.
Galimard
, “
Three dimensional creep model for wood under variable humidity—Numerical analyses at different material scales
,”
Mech. Time-Depend. Mater.
9
(
4
),
1
21
(
2005
).
7.
Dubois
,
F.
,
H.
Randriambololona
, and
C.
Petit
, “
Creep in wood under variable climate conditions: Numerical modeling and experimental validation
,”
Mech. Time-Depend. Mater.
9
,
173
202
(
2005
).
8.
Dubois
,
F.
,
J. M.
Husson
,
N.
Sauvat
, and
N.
Manfoumbi
, “
Modeling of the viscoelastic mechano-sorptive behavior in wood
,”
Mech. Time-Depend. Mater.
16
,
439
460
(
2012
).
9.
Fafard
,
M.
,
M. T.
Boudjelal
,
B.
Bissonnette
, and
A.
Cloutier
, “
Three-dimensional viscoelastic model with nonconstant coefficients
,”
J. Eng. Mech.
127
(
8
),
808
815
(
2001
).
10.
Fortino
,
S.
,
F.
Mirianon
, and
T.
Toratti
, “
A 3D moisture-stress FEM analysis for time dependent problems in timber structures
,”
Mech. Time-Depend. Mater.
13
(
4
),
333
356
(
2009
).
11.
Gibson
,
L. J.
, “
Biomechanics of cellular solids
,”
J. Biomech.
38
,
377
399
(
2005
).
12.
Grossman
,
P. U. A.
, “
Requirements for a model that exhibits mechano-sorptive behaviour
,”
Wood Sci. Technol.
10
(
3
),
163
168
(
1976
).
13.
Hammerle
,
J. R.
, and
W. F.
McClure
, “
The determination of Poisson's ratio by compression test of cylindrical specimens
,”
J. Texture Stud.
2
(
1
),
31
49
(
1971
).
14.
Hanhijärvi
,
A.
,
D.
Hunt
, “
Experimental indication of interaction between viscoelastic and mechano-sorptive creep
,”
Wood Sci. Technol.
32
(
1
),
57
70
(
1998
).
15.
Hayashi
,
K.
,
B.
Felix
, and
C.
Le Govic
, “
Wood viscoelastic compliance determination with special attention to measurement problems
,”
Mater. Struct.
26
(
6
),
370
376
(
1993
).
17.
Hering
,
S.
,
D.
Keunecke
, and
P.
Niemz
, “
Moisture-dependent orthotropic elasticity of beech wood
,”
Wood Sci. Technol.
46
,
927
938
(
2012
).
16.
Hering
,
S.
, and
P.
Niemz
, “
Moisture-dependent, pure viscoelastic creep of European beech wood in longitudinal direction
,”
Eur. J. Wood Wood Prod.
70
(
5
),
667
670
(
2012
).
18.
Hilton
,
H. H.
, “
The elusive and fickle viscoelastic Poisson's ratio and its relation to elastic-viscoelastic correspondence principle
,”
J. Mech. Mater. Struct.
4
(
7–8
),
1341
1364
(
2009
).
19.
Hilton
,
H. H.
, and
S.
Yi
, “
The significance of (an)isotropic viscoelasticPoisson ratio stress and time dependencies
,”
Int. J. Solids Struct.
35
(
23
),
3081
3095
(
1998
).
20.
Hoffmeyer
,
P.
, and
R. W.
Davidson
, “
Mechano-sorptive creep mechanism of wood in compression and bending
,”
Wood Sci. Technol.
23
(
3
),
215
227
(
1989
).
21.
Holzer
,
S. M.
,
J. R.
Loferski
, and
D. A.
Dillard
, “
A review of creep in wood: Concepts relevant to develop long-term behavior predictions for wood structures
,”
Wood Fiber Sci.
21
(
4
),
376
392
(
1989
).
22.
Hunt
,
D. G.
, “
A unified approach to creep of wood
,”
Proc. R. Soc. London, Ser. A.
455
,
4077
4095
(
1999
).
23.
Husson
,
J. M.
,
F.
Dubois
, and
N.
Sauvat
, “
Elastic response in wood under moisture content variations: Analytic development
,”
Mech. Time-Depend. Mater.
14
(
2
),
203
217
(
2010
).
24.
Jeong
,
G. Y.
,
A.
Zink-Sharp
, and
D. P.
Hindman
, “
Tensile properties of earlywood and latewood from loblolly pine (Pinus taeda) using digital image correlation
,”
Wood Fiber Sci.
41
(
1
),
51
63
(
2009
).
25.
Keunecke
,
D.
,
K.
Novosseletz
,
C.
Lanvermann
,
D.
Mannes
, and
P.
Niemz
, “
Combination of X-ray and digital image correlation for the analysis of moisture-induced strain in wood: opportunities and challenges
,”
Eur. J. Wood Wood Prod.
70
(
4
),
407
413
(
2012
).
26.
Keunecke
,
D.
,
S.
Hering
, and
P.
Niemz
, “
Three-dimensional elastic behaviour of common yew and Norway spruce
,”
Wood Sci. Technol.
42
(
8
),
633
647
(
2008
).
27.
Lakes
,
R. S.
, “
Foam structures with a negative Poisson's ratio
,”
Science
235
(
4792
),
1038
1040
(
1987
).
28.
Lakes
,
R. S.
, “
Deformation mechanisms in negative Poisson's ratio materials: Structural aspects
,”
J. Mater. Sci.
26
(
9
),
2287
2292
(
1991
).
29.
Lakes
,
R. S.
, “
The time-dependent Poisson's ratio of viscoelastic materials can increase or decrease
,”
Cell. Polym.
11
,
466
469
(
1992
).
30.
Lakes
,
R. S.
, “
Materials with structural hierarchy
,”
Nature
361
,
511
515
(
1993
).
31.
Lakes
,
R. S.
,
Viscoelastic Materials
(
Cambridge University Press
,
New York
,
2009
).
32.
Lakes
,
R. S.
, and
A.
Wineman
, “
On Poisson's ratio in linearly viscoelastic solids
,”
J. Elasticity
85
,
45
63
(
2006
).
33.
Lee
,
H. S.
, and
J.
Kim
, “
Determination of viscoelastic Poisson's ratio and creep compliance from the indirect tension test
,”
J. Mater. Civ. Eng.
21
(
8
)
416
425
(
2009
).
34.
Liu
,
T.
, “
Creep of wood under a large span of loads in constant and varying environments—Part 1: Experimental observations and analysis
,”
Holz Roh-Werkst.
51
(
6
),
400
405
(
1993
).
35.
Liu
,
Q.
,
Literature Review: Materials With Negative Poisson's Ratios and Potential Applications to Aerospace and Defence
(
Air Vehicles Division, DSTO Defence Science and Technology Organisation
,
Victoria, Australia
,
2006
).
36.
Martensson
,
A.
, and
S.
Thelandersson
, “
Mechano-sorptive effects in wooden material
,”
Wood Sci. Technol.
28
(
6
),
437
449
(
1994
).
37.
Muszynski
,
L.
,
R.
Lagana
, and
S. M.
Shaler
, “
Hygro-mechanical behavior of red spruce in tension parallel to the grain
,”
Wood Fiber Sci.
38
(
1
),
155
165
(
2006
).
38.
Navi
,
P.
, and
S. E.
Stanzl-Tschegg
, “
Micromechanics of creep and relaxation of wood. A review
,”
Holzforschung
63
,
186
195
(
2009
).
39.
Neale
,
P. J.
,
K. L.
Alderson
,
A. P.
Pickles
, and
K. E.
Evans
, “
Negative Poisson's ratio of microporous polyethylene in compression
,”
J. Mater. Sci. Lett.
12
(
19
),
1529
1532
(
1993
).
40.
Neuhaus
,
H.
, “
Elastic behavior of spruce wood as a function of moisture content
,”
Holz Roh-Werkst.
41
(
1
),
21
25
(
1983
).
41.
O'Brien
,
D. J.
,
N. R.
Sottos
, and
S. R.
White
, “
Cure-dependent viscoelastic Poisson's ratio of epoxy
,”
Exp. Mech.
47
(
2
),
237
249
(
2007
).
42.
Ormarsson
,
S.
,
O.
Dahlblom
, and
M.
Johansson
, “
Numerical study of how creep and progressive stiffening affect the growth stress formation in trees
,”
Trees
24
(
1
),
105
115
(
2010
).
43.
Ozyhar
,
T.
,
S.
Hering
, and
P.
Niemz
, “
Moisture-dependent elastic and strength anisotropy of European beech wood in tension
,”
J. Mater. Sci.
47
(
16
),
6141
6150
(
2012a
).
44.
Ozyhar
,
T.
,
S.
Hering
, and
P.
Niemz
, “
Moisture-dependent orthotropic tension compression asymmetry of wood
Holzforschung
(
2012b
).
45.
Ozyhar
,
T.
,
S.
Hering
,
S. J.
Sanabria
, and
P.
Niemz
, “
Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves
,”
Wood Sci. Technol.
(
2012c
).
46.
Pandini
,
S.
, and
A.
Pegoretti
, “
Time, temperature, and strain effects on viscoelastic Poisson's ratio of epoxy resins
,”
Polym. Eng. Sci.
48
(
7
),
1434
1441
(
2008
).
47.
Prall
,
D.
, and
R. S.
Lakes
, “
Properties of a chiral honeycomb with a Poisson's ratio-1
,”
Int. J. Mech. Sci.
39
,
305
314
(
1996
).
48.
Ranta-Maunus
,
A.
, “
The viscoelasticity of wood at varying moisture content
,”
Wood Sci. Technol.
9
(
3
),
189
205
(
1975
).
49.
Schmidt
,
J.
, and
M.
Kaliske
, “
Anisotropic moisture depending viscoelastic material model for wood
,”
Proc. Appl. Math. Mech.
4
(
1
),
205
206
(
2004
).
50.
Schniewind
,
A. P.
, and
J. D.
Barrett
, “
Wood as a linear orthotropic viscoelastic material
,”
Wood Sci. Technol.
6
(
1
),
43
57
(
1972
).
51.
Shamov
,
I. V.
, “
Long-time study of Poisson's ratio for polyethylene stressed in the small strains range
,”
Mech. Compos. Mater.
1
(
3
),
36
38
(
1965
).
52.
Svensson
,
S.
, and
T.
Toratti
, “
Mechanical response of wood perpendicular to grain when subjected to changes of humidity
,”
Wood Sci. Technol.
36
(
2
),
145
156
(
2002
).
53.
Taniguchi
,
Y.
, and
K.
Ando
, “
Time dependence of Poisson's effect in wood I: The lateral strain behavior
,”
J. Wood Sci.
56
(
2
),
100
106
(
2010
).
54.
Taniguchi
,
Y.
,
K.
Ando
, and
H.
Yamamoto
, “
Determination of three-dimensional viscoelastic compliance in wood by tensile creep test
,”
J. Wood Sci.
56
(
1
),
82
84
(
2010
).
55.
Ting
,
T. C. T.
, and
T.
Chen
, “
Poisson's ratio for anisotropic elastic materials can have no bounds
,”
Q. J. Mech. Appl. Math.
58
(
1
),
73
82
(
2005
).
56.
Toratti
,
T.
, “
Creep of timber beams in a variable environment
,” Report No. 31,
Helsinki University of Technology
, Helsinki,
1992
.
57.
Toratti
,
T.
, and
S.
Svensson
, “
Mechano-sorptive experiments perpendicular to grain under tensile and compressive loads
,”
Wood Sci. Technol.
34
(
4
),
317
326
(
2000
).
58.
Tscharnuter
,
D.
,
M.
Jerabek
,
Z.
Major
, and
R. W.
Lang
, “
Time-dependent Poisson's ratios of polypropylene compounds for various strain histories
,”
Mech. Time-Depend. Mater.
15
(
1
),
15
28
(
2011
).
59.
Tschoegl
,
N. W.
,
W. G.
Knauss
, and
I.
Emri
, “
Poisson's ratio in linear viscoelasticity—A critical review
,”
Mech. Time-Depend. Mater.
6
(
1
),
3
51
(
2002
).
60.
Vidal-Sallé
,
E.
, and
P.
Chassagne
, “
Constitutive equations for orthotropic nonlinear viscoelastic behaviour using a generalized Maxwell model application to wood material
,”
Mech. Time-Depend. Mater.
11
(
2
),
127
142
(
2007
).
61.
Zink
,
A. G.
,
R. B.
Hanna
, and
J. W.
Stelmokas
, “
Measurement of Poisson's ratios for yellow-poplar
,”
For. Prod. J.
47
(
3
),
78
80
(
1997
).
You do not currently have access to this content.