A method is presented to obtain rheological information from capillary velocimetry experiments coupled with pressure drop measurements. The method is based on rescaling the velocity profile with the wall shear stress. The stress-rescaled velocity curve generated depends only on the rheological properties of the fluid, and not on other experimental variables such as tube dimensions, flow rates or pressure drops employed, thus providing a direct means for rheological characterization. We also present transformed functions of the rescaled velocity that facilitate the interpretation of the rheological information via plots that resemble conventional rheograms. In contrast with previous data processing methods that require differentiation, model fitting, or smoothing, the proposed rescaling approach does not require the introduction of additional data processing parameters, such as smoothing factors, that may affect reproducibility of the results. The rescaling method should be useful for robust measurements in low signal-to-noise conditions such as rapid measurements required for process control.

1.
Arola
,
D. F.
,
G. A.
Barrall
,
R. L.
Powell
,
K. L.
McCarthy
, and
M. J.
McCarthy
, “
Use of nuclear magnetic resonance imaging as a viscometer for process monitoring
,”
Chem. Eng. Sci.
52
,
2049
2057
(
1997
).
2.
Arola
,
D. F.
,
R. L.
Powell
,
G. A.
Barrall
, and
M. J.
McCarthy
, “
A simplified method for accuracy estimation of nuclear magnetic resonant imaging
,”
Rev. Sci. Instrum.
69
,
3300
3307
(
1998
).
3.
Arola
,
D. F.
,
R. L.
Powell
,
G. A.
Barrall
, and
M. J.
McCarthy
, “
Pointwise observations for rheological characterization using nuclear magnetic resonance imaging
,”
J. Rheol.
43
,
9
30
(
1999
).
4.
Barnes
,
H. A.
,
J. F.
Hutton
, and
K.
Walters
,
An Introduction to Rheology
(
Elsevier Science
,
Amsterdam
,
1989
).
5.
Binding
,
D. M.
, “
An approximate analysis for contraction and convergence flows
,”
J. Non-Newtonian Fluid Mech.
27
,
173
189
(
1988
).
6.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol. 1.
7.
Caprihan
,
A.
, and
E.
Fukushima
, “
Flow measurements by NMR
,”
Phys. Rep.
198
,
195
235
(
1990
).
8.
Cartalos
,
U.
, and
J. M.
Piau
, “
Creeping flow regimes of low concentration polymer solutions in thick solvents through an orifice die
,”
J. Non-Newtonian Fluid Mech.
45
,
231
285
(
1992
).
9.
Cheung
,
M. K.
,
R. L.
Powell
, and
M. J.
McCarthy
, “
Nuclear magnetic resonance imaging based capillary rheometer
,”
AIChE J.
43
,
2596
2600
(
1997
).
10.
Choi
,
Y. J.
,
K. L.
McCarthy
, and
M. J.
McCarthy
, “
A MATLAB graphical user interface program for tomographic viscometer data processing
,”
Comput. Electron. Agric.
47
,
59
67
(
2005
).
11.
Cross
,
M. M.
, “
Kinetic interpretation of non-Newtonian flow
,”
J. Colloid Interface Sci.
33
,
30
35
(
1970
).
12.
Degré
,
G.
,
P.
Joseph
,
P.
Tabeling
,
S.
Lerouge
,
M.
Coitre
, and
A.
Ajdari
, “
Rheology of complex fluids by particle image velocimetry in microchannels
,”
Appl. Phys. Lett.
89
,
024104
(
2006
).
13.
Dogan
,
N.
,
M. J.
McCarthy
, and
R. L.
Powell
, “
Measurement of polymer melt rheology using ultrasonics-based in-line rheometry
,”
Meas. Sci. Technol.
16
,
1684
1690
(
2005
).
14.
Gibbs
,
S. J.
,
D.
Xing
,
T. A.
Carpenter
,
L. D.
Hall
,
S.
Ablett
,
I. D.
Evans
,
W.
Frith
, and
D. E.
Haycock
, “
NMR flow imaging of aqueous polysaccharide solutions
,”
J. Rheol.
38
,
1757
1767
(
1994
).
15.
Kalman
,
D. P.
,
J. B.
Schein
,
J. M.
Houghton
,
C. H. N.
Laufer
,
E. D.
Wetzel
, and
N. J.
Wagner
, “
Polymer dispersion based shear thickening fluid-fabrics for protective applications
,” Proceedings of SAMPE 2007, Baltimore, MD (SAMPE Publishing, Baltimore, MD,
2007
).
16.
Koh
,
C. J.
,
P.
Hookham
, and
L. G.
Leal
, “
An experimental investigation of concentrated suspension flows in a rectangular channel
,”
J. Fluid Mech.
266
,
1
32
(
1994
).
17.
Köseli
,
V.
,
Ş.
Zeybek
, and
Y.
Uludag
, “
Online viscosity measurement of complex solutions using ultrasound Doppler velocimetry
,”
Turk. J. Chem.
30
,
297
305
(
2006
).
18.
Macías
,
E. R.
,
F.
Bautista
,
J. F. A.
Soltero
,
J. E.
Puig
,
P.
Attané
, and
O.
Manero
, “
On the shear thickening flow of dilute CTAT worm-like micellar solutions
,”
J. Rheol.
47
,
643
658
(
2003
).
19.
Mackley
,
M. R.
, “
Capillary rheometry
,” in
Rheological Measurement
, edited by A. A. Collyer and D. W. Clegg (
Elsevier
,
London
,
1988
).
20.
Macosko
,
C. W.
,
Rheology Principles, Measurements and Applications
(
VCH
,
New York
,
1993
).
21.
McCarthy
,
K. L.
,
R. J.
Kauten
,
M. J.
McCarthy
, and
J. F.
Steffe
, “
Flow profiles in a tube rheometer using magnetic resonance imaging
,”
J. Food. Eng.
16
,
109
125
(
1992
).
22.
Morrison
,
F. A.
,
Understanding Rheology
(
Oxford University Press
,
New York
,
2001
).
23.
Nguyen
,
N. T.
,
D. T.
Vu
,
H. K.
Wong
, and
Y. L.
Yeow
, “
Solving the inverse problem of capillary viscometry by Tikhonov regularisation
,”
J. Non-Newtonian Fluid Mech.
87
,
103
116
(
1999
).
24.
Sahebjavaher
,
R. S.
,
K.
Walus
, and
B.
Stoeber
, “
Permanent magnet desktop magnetic resonance imaging system with microfabricated multiturn gradient coils for microflow imaging in capillary tubes
,”
Rev. Sci. Instrum.
81
,
023706
(
2010
).
25.
Santiago
,
J. G.
,
S. T.
Wereley
,
C. D.
Meinhart
,
D. J.
Beebe
, and
R. J.
Adrian
, “
A particle image velocimetry system for microfluidics
,”
Exp. Fluids
25
,
316
319
(
1998
).
26.
Stickel
,
J. J.
, “
Data smoothing and numerical differentiation by a regularization method
,”
Comput. Chem. Eng.
34
,
467
475
(
2010
).
27.
Szabo
,
P.
,
J. M.
Rallison
, and
E. J.
Hinch
, “
Start-up of flow of a FENE-fluid through a 4:1:4 constriction in a tube
,”
J. Non-Newtonian Fluid Mech.
72
,
73
86
(
1997
).
28.
Wiklund
,
J.
,
I.
Shahram
, and
M.
Stading
, “
Methodology for in-line rheology by ultrasound Doppler velocity profiling and pressure difference techniques
,”
Chem. Eng. Sci.
62
,
4277
4293
(
2007
).
29.
Wunderlich
,
T.
, and
P. O.
Brunn
, “
Ultrasound pulse Doppler method as a viscometer for process monitoring
,”
Flow Meas. Instrum.
10
,
201
205
(
1999
).
30.
Yeow
,
Y. L.
, and
J. W.
Taylor
, “
Obtaining the shear rate profile of steady laminar tube flow of Newtonian and non-Newtonian fluids from nuclear magnetic resonance imaging and laser Doppler velocimetry data
,”
J. Rheol.
46
,
351
365
(
2002
).
You do not currently have access to this content.