In the finite element framework, we employ decoupled time integration scheme for viscoelastic fluid (the Leonov model) flow and then investigate highly nonlinear behavior in 2D creeping contraction flow. In the analysis of steady solutions as a preliminary study, the results are shown to be free from frustrating mesh dependence when we incorporate the tensor-logarithmic formulation [Fattal and Kupferman, J. Non-Newtonian Fluid Mech. 123, 281–285 (2004)]. Two kinds of elastic fluid have been chosen, that is, highly shear thinning and Boger-type liquids. According to each liquid property, the transient computational modeling has revealed qualitatively distinct dynamics of instability. With pressure difference imposed slightly below the steady convergence limit, the numerical scheme demonstrates fluctuating solution without approaching steady state for the shear thinning fluid. When the pressure fairly higher than the limit is enforced, severe fluctuation of flowrate, oscillation of corner vortices, and also asymmetric irregular stress wave propagation along the downstream channel wall are expressed. In addition, flow dynamics seems quite stochastic with scanty temporal correlation. For the Boger-type fluid, under the traction higher than steady limit, the flowrate and corner vortices exhibit periodic variation with asymmetry added to the dynamics. These express elastic flow instability in this inertialess flow approximation.

1.
Afonso
,
A. M.
,
P. J.
Oliveira
,
F. T.
Pinho
, and
M. A.
Alves
, “
Dynamics of high-Deborah-number entry flows: A numerical study
,”
J. Fluid Mech.
677
,
272
304
(
2011
).
2.
Arratia
,
P. E.
,
C. C.
Thomas
,
J.
Diorio
, and
J. P.
Collub
, “
Elastic instabilities of polymer solutions in cross-channel flow
,”
Phys. Rev. Lett.
96
,
144502
(
2006
).
3.
Baaijens
,
F. P. T.
, “
Mixed finite element methods for viscoelastic flow analysis: A review
,”
J. Non-Newtonian Fluid Mech.
79
,
361
385
(
1998
).
4.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987
).
5.
Boffetta
,
G.
,
A.
Celani
,
A.
Mazzino
,
A.
Puliafito
, and
M.
Vergassola
, “
The viscoelastic Kolmogorov flow: Eddy viscosity and linear stability
,”
J. Fluid Mech.
523
,
161
170
(
2005
).
6.
Bogaerds
,
A. C. B.
,
M. A.
Hulsen
,
G. W. M.
Peters
, and
F. P. T.
Baaijens
, “
Stability analysis of injection molding flows
,”
J. Rheol.
48
,
765
785
(
2004
).
7.
Boger
,
D. V.
, and
K.
Walters
,
Rheological Phenomena in Focus
(
Elsevier
,
Amsterdam
,
1993
).
8.
Burghelea
,
T.
,
E.
Segre
,
I.
Bar-Joseph
,
A.
Groisman
, and
V.
Steinberg
, “
Chaotic flow and efficient mixing in a microchannel with a polymer solution
,”
Phys. Rev. E
69
,
066305
(
2004
).
9.
Chiba
,
K.
,
T.
Sakatani
, and
K.
Nakamura
, “
Anomalous flow patterns in viscoelastic entry flow through a planar contraction
,”
J. Non-Newtonian Fluid Mech.
36
,
193
203
(
1990
).
10.
Coronado
,
O. M.
,
D.
Arora
,
M.
Behr
, and
M.
Pasquali
, “
A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation formulation
,”
J. Non-Newtonian Fluid Mech.
147
,
189
199
(
2007
).
11.
Courant
,
R.
,
K.
Friedrichs
, and
H.
Lewy
, “
On the partial difference equations of mathematical physics
,”
Math. Ann.
100
,
32
234
(
1928
) (in German) [republished in English in IBM J. 11, 215–234 (1967)].
12.
Damanik
,
H.
,
J.
Hiron
,
A.
Ouazzi
, and
S.
Turek
, “
A monolithic FEM approach for the log-conformation reformulation (LCR) of viscoelastic flow problems
,”
J. Non-Newtonian Fluid Mech.
165
,
1105
1113
(
2010
).
13.
D’Avino
,
G.
, and
M. A.
Hulsen
, “
Decoupled second-order transient schemes for the flow of viscoelastic fluids without a viscous solvent contribution
,”
J. Non-Newtonian Fluid Mech.
165
,
1602
1612
(
2010
).
14.
Fattal
,
R.
, and
R.
Kupferman
, “
Constitutive laws for the matrix-logarithm of the conformation tensor
,”
J. Non-Newtonian Fluid Mech.
123
,
281
285
(
2004
).
15.
Grillet
,
A. M.
,
A. C. B.
Bogaerds
,
G. W. M.
Peters
, and
F. P. T.
Baaijens
, “
Numerical analysis of flow mark surface defects in injection molding flow
,”
J. Rheol.
46
,
651
669
(
2002
).
16.
Groisman
,
A.
,
M.
Enzelberger
, and
S. R.
Quake
, “
Microfluidic memory and control devices
,”
Science
300
,
955
958
(
2003
).
17.
Groisman
,
A.
, and
V.
Steinberg
, “
Elastic turbulence in a polymer solution flow
,”
Nature
405
,
53
55
(
2000
).
18.
Hulsen
,
M. A.
, “
A sufficient condition for a positive definite configuration tensor in differential models
,”
J. Non-Newtonian Fluid Mech.
38
,
93
100
(
1990
).
19.
Hulsen
,
M. A.
,
R.
Fattal
, and
R.
Kupferman
, “
Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms
,”
J. Non-Newtonian Fluid Mech.
127
,
27
39
(
2005
).
20.
Joseph
,
D. D.
,
Fluid Dynamics of Viscoelastic Liquids
(
Springer-Verlag
,
New York
,
1990
).
21.
Keshtiban
,
I. J.
,
B.
Puangkird
,
H.
Tamaddon-Jahromi
, and
M. F.
Webster
, “
Generalised approach for transient computation of start-up pressure-driven viscoelastic flow
,”
J. Non-Newtonian Fluid Mech.
151
,
2
20
(
2008
).
22.
Kwon
,
Y.
, and
A. I.
Leonov
, “
On instabilities of single-integral constitutive-equations for viscoelastic liquids
,”
Rheol. Acta
33
,
398
404
(
1994
).
23.
Kwon
,
Y.
, and
A. I.
Leonov
, “
Stability constraints in the formulation of viscoelastic constitutive equations
,”
J. Non-Newtonian Fluid Mech.
58
,
25
46
(
1995
).
24.
Kwon
,
Y.
, “
Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations
,”
Korea-Aust. Rheol. J.
16
,
183
191
(
2004
).
25.
Kwon
,
Y.
, and
K. S.
Park
, “
Decoupled algorithm for transient viscoelastic modeling
,”
Korea-Aust. Rheol. J.
24
,
53
63
(
2012
).
26.
Lee
,
J.
,
S.
Yoon
,
Y.
Kwon
, and
S. J.
Kim
, “
Practical comparison of differential viscoelastic constitutive equations in finite element analysis of planar 4:1 contraction flow
,”
Rheol. Acta
44
,
188
197
(
2004
).
27.
Leonov
,
A. I.
, “
Nonequilibrium thermodynamics and rheology of viscoelastic polymer media
,”
Rheol. Acta
15
,
85
98
(
1976
).
28.
Leonov
,
A. I.
, “
On a class of constitutive equations for elasto-viscous liquids
,”
J. Non-Newtonian Fluid Mech.
25
,
1
59
(
1987
).
29.
Leonov
,
A. I.
, “
Analysis of simple constitutive-equations for viscoelastic liquids
,”
J. Non-Newtonian Fluid Mech.
42
,
323
350
(
1992
).
30.
Leonov
,
A. I.
, and
A. N.
Prokunin
,
Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids
(
Chapman & Hall
,
New York
,
1994
).
31.
McKinley
,
G. H.
,
J. A.
Byars
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Observations on the elastic instability in cone-and-plate and parallel-plate flows of a polyisobutylene Boger fluid
,”
J. Non-Newtonian Fluid Mech.
40
,
201
229
(
1991
).
32.
Owens
,
R. G.
, and
T. N.
Phillips
,
Computational Rheology
(
Imperial College Press
,
London
,
2002
).
33.
Poole
,
R. J.
,
M. A.
Alves
, and
P. J.
Oliveira
, “
Purely elastic flow asymmetries
,”
Phys. Rev. Lett.
99
,
164503
(
2007
).
34.
Shaqfeh
,
E. S. G.
, “
Purely elastic instabilities in viscometric flows
,”
Annu. Rev. Fluid Mech.
28
,
129
185
(
1996
).
35.
Simhambhatla
,
M.
, and
A. I.
Leonov
, “
On the rheological modeling of viscoelastic polymer liquids by stable constitutive equations
,”
Rheol. Acta
34
,
259
273
(
1995
).
36.
Soulages
,
J.
,
M. S. N.
Oliveira
,
P. C.
Sousa
,
M. A.
Alves
, and
G. H.
McKinley
, “
Investigating the stability of viscoelastic stagnation flows in T-shaped microchannels
,”
J. Non-Newtonian Fluid Mech.
163
,
9
24
(
2009
).
37.
Tanner
,
R. I.
,
Engineering Rheology
(
Oxford
,
New York
,
2000
).
38.
Vaithianathan
,
T.
, and
L. R.
Collins
, “
Numerical approach to simulating turbulent flow of a viscoelastic polymer solution
,”
J. Comput. Phys.
187
,
1
21
(
2003
).
39.
Xue
,
S. C.
,
R. I.
Tanner
, and
N.
Phan-Thien
, “
Numerical modeling of transient viscoelastic flows
,”
J. Non-Newtonian Fluid Mech.
123
,
33
58
(
2004
).
You do not currently have access to this content.