This work deals with the magnetic field-induced static yield stress of magnetorheological (MR) suspensions with concentration near the limit of maximum-packing fraction. With this aim, homogeneous suspensions of iron microparticles with 50 vol.% concentration were prepared, and their yield stress measured as a function of the applied magnetic field. In view of the failure of existing models to predict, on the basis of realistic hypotheses, the values of the yield stress of highly concentrated MR suspensions, we developed a new model. Our model considers that field application induces body-centered tetragonal structures. Upon shearing, these structures deform in such a way that interparticle gaps appear between neighboring particles of the same chain, whereas the approach of particles of parallel chains ensures the mechanical stability of the whole multi-chain structure. Based on this hypothesis, and using finite element method simulations of interparticle magnetic interactions, our model is able to quantitatively predict the yield stress of highly concentrated MR suspensions. Furthermore, estimations show that the main contribution to the field-dependent part of the yield stress comes from the change in the permeability of the structures as interparticle gaps are enlarged by the shear.

1.
Barnes
,
H. A.
,
J. F.
Hutton
, and
K.
Walters
,
An Introduction to Rheology
(
Elsevier
,
Amsterdam
,
1993
).
2.
Bonnecaze
,
R. T.
, and
J. F.
Brady
, “
Yield stresses in electrorheological fluids
,”
J. Rheol.
36
,
73
115
(
1992
).
3.
Bossis
,
G.
,
E.
Lemaire
,
O.
Volkova
, and
H.
Clercx
, “
Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models
,”
J. Rheol.
41
,
687
704
(
1997
).
4.
Bossis
,
G.
,
O.
Volkova
,
S.
Lacis
, and
A.
Meunier
, “
Magnetorheology: Fluids, structures and rheology
,”
Lect. Notes Phys.
594
,
186
230
(
2002
).
5.
Clausen
,
J. R.
,
D. A.
Reasor
, Jr.
, and
C. K.
Aidun
, “
The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules
,”
J. Fluid Mech.
685
,
202
234
(
2011
).
6.
Clercx
,
H. J. H.
, and
G.
Bossis
, “
Many-body electrostatic interactions in electrorheological fluids
,”
Phys. Rev. E
48
,
2721
2738
(
1993
).
7.
Chen
,
T.-J.
,
R. N.
Zitter
, and
R.
Tao
, “
Laser diffraction determination of the crystalline structure of an electrorheological fluid
,”
Phys. Rev. Lett.
68
,
2555
2558
(
1992
).
8.
Chin
,
B. D.
,
J. H.
Park
,
M. H.
Kwo
, and
O. O.
Park
, “
Rheological properties and dispersion stability of magnetorheological (MR) suspensions
,”
Rheol. Acta
40
,
211
219
(
2001
).
9.
Cutillas
,
S.
, and
G.
Bossis
, “
A comparison between flow induced structures in electrorheological and magnetorheological fluids
,”
Europhys. Lett.
40
,
465
470
(
1997
).
10.
de Vicente
,
J.
,
F.
González-Caballero
,
G.
Bossis
, and
O.
Volkova
, “
Normal force study in concentrated carbonyl iron magnetorheological suspensions
,”
J. Rheol.
46
,
1295
1303
(
2002
).
11.
Ginder
,
J. M.
, and
L. C.
Davis
, “
Shear stresses in magnetorheological fluids: Role of magnetic saturation
,”
Appl. Phys. Lett.
65
,
3410
3412
(
1994
).
12.
Ginder
,
J. M.
,
L. C.
Davis
, and
L. D.
Elie
, “
Rheology of magnetorheological fluids: Models and measurements
,”
Int. J. Mod. Phys. B
10
,
3293
3303
(
1996
).
13.
Jiles
,
D.
,
Introduction to Magnetism and Magnetic Materials
(
Chapman and Hill
,
London
,
1991
).
14.
Kittipoomwong
,
D.
,
D. J.
Klingenberg
, and
J. C.
Ulicny
, “
Dynamic yield stress enhancement in bidisperse magnetorheological fluids
,”
J. Rheol.
49
,
1521
1538
(
2005
).
15.
Klingenberg
,
D. J.
, and
C. F.
Zukoski
, “
Studies on the steady-shear behavior of electrorheological suspensions
,”
Langmuir
6
,
15
24
(
1990
).
16.
Landau
,
L. D.
, and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
(
Pergamon
,
New York
,
1984
).
17.
Laun
,
H. M.
,
C.
Gabriel
, and
G.
Schmidt
, “
Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T
,”
J. Non-Newtonian Fluid Mech.
148
,
47
56
(
2008a
).
18.
Laun
,
H. M.
,
G.
Schmidt
,
C.
Gabriel
, and
C.
Kieburg
, “
Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations
,”
Rheol. Acta
47
,
1049
1059
(
2008b
).
19.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
).
20.
Meeker
,
D. C.
, Finite Element Method Magnetics, Version 4.2 (Mathematica Build, 15 July
2009
), http://www.femm.info.
21.
Onoda
,
G. Y.
, and
E. R.
Liniger
, “
Random loose packings of uniform spheres and the dilatancy onset
,”
Phys. Rev. Lett.
64
,
2727
2730
(
1990
).
22.
Phulé
,
P. P.
,
M. T.
Mihalcin
, and
S.
Gene
, “
The role of the dispersed-phase remnant magnetization on the redispersibility of magnetorheological fluids
,”
J. Mater. Res.
14
,
3037
3041
(
1999
).
23.
Russell
,
W. B.
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
Cambridge
,
1989
).
24.
Shkel
,
Y. M.
, and
D. J.
Klingenberg
, “
A continuum approach to electrorheology
,”
J. Rheol.
43
,
1307
1322
(
1999
).
26.
Tao
,
R.
, and
J. M.
Sun
, “
Three-dimensional structure of induced electrorheological solid
,”
Phys. Rev. Lett.
67
,
398
401
(
1991
).
25.
Tao
,
R.
, and
Q.
Jiang
, “
Structural transformations of an electrorheological and magnetorheological fluid
,”
Phys. Rev. E
57
,
5761
5765
(
1998
).
27.
Zhou
,
J. Z. Q.
,
T.
Fang
,
G.
Luo
, and
P. H. T.
Uhlherr
, “
Yield stress and maximum packing fraction of concentrated suspensions
,”
Rheol. Acta
34
,
544
561
(
1995
).
You do not currently have access to this content.