Aggregated suspensions of rodlike particles are commonly encountered in soft biological materials and their solidlike response at extremely low volume fractions is also exploited technologically. Understanding the link between the physicochemical parameters such as size, aspect ratio, volume fraction, and interparticle forces with the resulting microstructure and the subsequent rheological response remains challenging. In the present work, suspensions of monodisperse rodlike virus particles, whose surface is modified by grafting with a thermoreversible polymer poly(N-isopropylacrylamide), are used as a model system. The repulsive and attractive contributions to the total interaction potential can be changed independently by varying the ionic strength and the temperature. The effects of these changes on the strength and structure of gels have been studied near the gel transition using a combination of rheological and scattering measurements. Rheological measurements of the near critical gel properties as a function of concentration and ionic strength proved to be more sensitive compared to scattering in resolving the structural differences. A percolating structure can be formed at very low volume fractions, which show a weak dependence on the ionic strength with the anisotropy of the repulsive interactions playing the main role in creating more “open” structures. The intrinsic stiffness of the rodlike particles does not affect the moduli of the gel states very strongly.

1.
Alderman
,
N. J.
,
G. H.
Meeten
, and
J. D.
Sherwood
, “
Vane rheometry of bentonite gels
,”
J. Non-Newtonian Fluid Mech.
39
,
291
310
(
1991
).
2.
Baravian
,
C.
, and
D.
Quemada
, “
Using instrumental inertia in controlled stress rheometry
,”
Rheol. Acta
37
,
223
233
(
1998
).
3.
Barry
,
E.
,
D.
Beller
, and
Z.
Dogic
, “
A model liquid crystalline system based on rod-like viruses with variable chirality and persistence length
,”
Soft Matter
5
,
2563
2570
(
2009
).
4.
Basavaraj
,
M. G.
,
S.
Vandebril
,
J.
Fransaer
, and
J.
Vermant
, “
Exploiting particle shape in solid stabilized emulsions
,”
Soft Matter
5
,
1717
1727
(
2009
).
7.
Buscall
,
R.
, “
Letter to the Editor: Wall slip in dispersion rheometry
,”
J. Rheol.
54
,
1177
1183
(
2010
).
5.
Buscall
,
R.
,
J. I.
McGowan
, and
A. J.
Morton-Jones
, “
The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip
,”
J. Rheol.
37
,
621
641
(
1993
).
6.
Buscall
,
R.
,
P. D. A.
Mills
,
J. W.
Goodwin
, and
D. W.
Lawson
, “
Scaling behavior of the rheology of aggregate networks formed from colloidal particles
,”
J. Chem. Soc., Faraday Trans.
84
,
4249
4260
(
1998
).
8.
Chambon
,
F.
, and
H. H.
Winter
, “
Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry
,”
J. Rheol.
31
,
683
697
(
1987
).
9.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Avalanche behavior in yield stress fluids
,”
Phys. Rev. Lett.
88
,
175501
(
2002
).
11.
Dealy
,
J. M.
, and
K. F.
Wissbrun
,
Melt Rheology and Its Role in Plastics Processing: Theory and Applications
(
Van Nostrand Reinhold
,
New York
,
1990
).
12.
Dogic
,
Z.
, and
S.
Fraden
, “
Cholesteric phase in virus suspensions
,”
Langmuir
16
,
7820
7824
(
2000
).
13.
Elson
,
E. L.
, “
Cellular mechanics as an indicator of cytoskeletal structure and function
,”
Annu. Rev. Biophys. Biophys. Chem.
17
,
397
430
(
1988
).
14.
Ewoldt
,
R. H.
, and
G. H.
McKinley
, “
Creep-ringing in rheometry: Or how to deal with often-discarded data in step-strain tests
,”
Rheol. Bull.
76
,
4
8
(
2007
).
15.
Graf
,
C.
,
H.
Kramer
,
M.
Deggelmann
,
M.
Hagenböchle
,
C.
Johner
,
C.
Martin
, and
R.
Weber
, “
Rheological properties of suspensions of interacting rodlike FD-virus particles
,”
J. Chem. Phys.
98
,
4920
4928
(
1993
).
16.
Grelet
,
E.
, and
S.
Fraden
, “
What is the origin of chirality in the cholesteric phase of virus suspensions
,”
Phys. Rev. Lett.
90
,
198302
(
2003
).
17.
Hagenböchle
,
M.
,
B.
Weyerich
,
M.
Deggelmann
,
C.
Graf
,
R.
Krause
,
E. E.
Maier
,
S. F.
Schulz
,
R.
Klein
, and
R.
Weber
, “
Static light scattering by aqueous solutions of rod-like fd-virus particles
,”
Phys. A: Stat. Theor. Phys.
169
,
29
41
(
1990
).
18.
Hobbie
,
E. K.
,
J. A.
Fagan
,
J.
Obrzut
, and
S. D.
Hudson
, “
Microscale polymer-nanotube composites
,”
ACS Appl. Mater. Interface
1
,
1561
1566
(
2009
).
19.
Hoekstra
,
H.
,
J.
Vermant
,
J.
Mewis
, and
T.
Narayanan
, “
Multi length scale analysis of the microstructure in sticky sphere dispersions during shear flow
,”
Langmuir
21
,
11017
11025
(
2005
).
20.
Huang
,
F.
,
R.
Rotstein
,
S.
Fraden
,
K. E.
Kasza
, and
N. T.
Flynn
, “
Phase behavior and rheology of attractive rod-like particles
,”
Soft Matter
5
,
2766
2771
(
2009
).
21.
Kheirandish
,
S.
,
I.
Guybaidullin
,
W.
Wohlleben
, and
N.
Willenbacher
, “
Shear and elongational flow behavior of acrylic thickener solutions. Part I: Effect of intermolecular aggregation
,”
Rheol. Acta
47
,
999
1013
(
2008
).
22.
Kingery
,
W. D.
,
H. K.
Bowen
, and
D. R.
Uhlmann
,
Introduction to Ceramics
(
Wiley-Interscience
, New York,
1976
).
23.
Lettinga
,
M. P.
,
Z.
Dogic
,
H.
Wang
, and
J.
Vermant
, “
Flow behavior of colloidal rodlike viruses in the nematic phase
,”
Langmuir
21
,
8048
8057
(
2005
).
24.
Le Meins
,
J. F.
,
P.
Moldenaers
, and
J.
Mewis
, “
Suspensions in polymer melts. 1. Effect of particle size on the shear flow behavior
,”
Ind. Eng. Chem. Res.
41
,
6297
6304
(
2002
).
26.
Lin
,
Y. C.
,
G. H.
Koenderink
,
F. C.
MacKintosh
, and
D. A.
Weitz
, “
Viscoelastic properties of microtubule networks
,”
Macromolecules
40
,
7714
7720
(
2007
).
27.
Matsunaga
,
T.
, and
M.
Shibayama
, “
Gel point determination of gelatin hydrogels by dynamic light scattering and rheological measurements
,”
Phys. Rev. E
76
,
030401
R
(
2007
).
28.
Maynard
,
A. D.
, “
Nanotechnology: Assessing the risks
,”
Nanotoday
1
,
22
33
(
2006
).
29.
Mohraz
,
A.
,
D. B.
Moler
,
R. M.
Ziff
, and
M. J.
Solomon
, “
Effect of monomer geometry on the fractal structure of colloidal rod aggregates
,”
Phys. Rev. Lett.
92
,
155503
(
2004
).
30.
Mohraz
,
A.
, and
M. J.
Solomon
, “
Gelation and internal dynamics of colloidal rod aggregates
,”
J. Colloid Interface Sci.
300
,
155
162
(
2006
).
31.
Möller
,
P. C. F.
,
J.
Mewis
, and
D.
Bonn
, “
Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice
,”
Soft Matter
2
,
274
283
(
2006
).
32.
Ng
,
T. S. K.
, and
G. H.
McKinley
, “
Power law gels at finite strains: The nonlinear rheology of gluten gels
,”
J. Rheol.
52
,
417
449
(
2008
).
33.
Onsager
,
L.
, “
The effect of shape on the interaction of colloidal particles
,”
Ann. N.Y. Acad. Sci.
51
,
627
659
(
1949
).
34.
Otten
,
R. H. J.
, and
P.
van der Schoot
, “
Continuum percolation of polydisperse nanofillers
,”
Phys. Rev. Lett.
103
,
225704
(
2009
).
35.
Panine
,
P.
,
T.
Narayanan
,
J.
Vermant
, and
J.
Mewis
, “
Structure and rheology during shear-induced crystallization of a latex suspension
,”
Phys. Rev. E
66
,
022401
(
2002
).
36.
Pelton
,
R.
, “
Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic
,”
J. Colloid Interface Sci.
348
,
673
674
(
2010
).
37.
Sambrook
,
J.
, and
D. W.
Russell
,
Molecular Cloning: A Laboratory Manual
, 3rd ed. (
Cold Spring Harbor
,
New York
,
2001
).
38.
Sato
,
J.
, and
V.
Breedveld
, “
Evaporation blocker for cone-plate rheometry of volatile samples
,”
Appl. Rheol.
15
,
390
397
(
2005
).
39.
Schild
,
H. G.
, “
Poly(N-isopropylacrylamide): Experiment, theory and application
,”
Prog. Polym. Sci.
17
,
163
249
(
1992
).
40.
Schilling
,
T.
,
S.
Jungblut
, and
M. A.
Miller
, “
Depletion-induced percolation in networks of nanorods
,”
Phys. Rev. Lett.
98
,
108303
(
2007
).
41.
Schultz
,
K. M.
,
A.
Baldwin
,
K. L.
Kiick
, and
E. M.
Furst
, “
Gelation of covalently cross-linked PEG-heparin hydrogels
,”
Macromolecules
42
,
5310
5316
(
2009
).
42.
Schulz
,
S. F.
,
E. E.
Maier
,
M.
Hagenböchle
,
C.
Graf
, and
R.
Weber
, “
Structural properties of dilute aqueous solutions of charged rods studied by light-scattering techniques
,”
Prog. Colloid Polym. Sci.
84
,
356
358
(
1991
).
43.
Solomon
,
M. J.
, and
P. T.
Spicer
, “
Microstructural regimes of colloidal rod suspensions, gels, and glasses
,”
Soft Matter
19
,
1391
1400
(
2010
).
44.
Sparnaay
,
M. J.
, “
The interaction between two cylinder shaped colloidal particles
,”
Recl. Trav. Chim. Pays-Bas
78
,
680
712
(
1959
).
45.
Sprakel
,
J.
,
E.
Spruijt
,
M. A.
Cohen Stuart
,
N. A. M.
Besseling
,
M. P.
Letting
, and
J.
van der Guchta
, “
Shear banding and rheochaos in associative polymer networks
,”
Soft Matter
4
,
1696
1705
(
2008
).
46.
Srivastava
,
D.
,
C.
Wei
, and
K.
Cho
, “
Nanomechanics of carbon nanotubes and composites
,”
Appl. Mech. Rev.
56
,
215
230
(
2003
).
47.
Stroobants
,
A.
,
H. N. W.
Lekkerkerker
, and
T.
Odijk
, “
Effect of electrostatic interaction on the liquid crystal phase transition in solutions of rod-like polyelectrolytes
,”
Macromolecules
19
,
2232
2238
(
1986
).
48.
Struik
,
L. C. E.
, “
Free damped vibrations of linear viscoelastic materials
,”
Rheol. Acta
6
,
119
129
(
1967
).
49.
Tanaka
,
T.
,
D.
Fillmore
,
S. T.
Sun
,
I.
Nishio
,
G.
Swislow
, and
A.
Shah
, “
Phase transitions in ionic gels
,”
Phys. Rev. Lett.
45
,
1636
1639
(
1980
).
50.
Tang
,
J. X.
, and
S.
Fraden
, “
Isotropic-cholesteric phase transition in colloidal suspensions of filamentous bacteriophage fd
,”
Liq. Cryst.
19
,
459
467
(
1995
).
51.
Tempel
,
M.
,
G.
Isenberg
, and
E.
Sackmann
, “
Temperature-induced sol-gel transition and microgel formation in actinin cross-linked actin networks: A rheological study
,”
Phys. Rev. E
54
,
1802
1810
(
1996
).
52.
ten Brinke
,
A. J. W.
,
L.
Bailey
,
H. N. W.
Lekkerkerker
, and
G. C.
Maitland
, “
Rheology modification in mixed shape colloidal dispersions. Part I: Pure components
,”
Soft Matter
3
,
1145
1162
(
2007
).
53.
Tharmann
,
R.
,
M. M. A. E.
Claessens
, and
A. R.
Bausch
, “
Viscoelasticity of isotropically cross-linked actin networks
,”
Phys. Rev. Lett.
98
,
088103
(
2007
).
54.
Uematsu
,
H.
,
Y.
Aoki
,
M.
Sugimoto
, and
K.
Koyama
, “
Rheology of SiO2/(acrylic polymer/epoxy) suspensions. I. Linear viscoelasticity
,”
Rheol. Acta
49
,
1187
1196
(
2010
).
55.
Umeya
,
K.
, and
Y.
Otsubo
, “
Viscoelastic behavior of suspensions of particles in polymer solutions
,”
Polym. Eng. Sci.
21
,
619
623
(
1981
).
56.
van Bruggen
,
M. P. B.
, and
H. N. W.
Lekkerkerker
, “
Metastability and multistability: Gelation and liquid crystal formation in suspensions of colloidal rods
,”
Langmuir
18
,
7141
7145
(
2002
).
57.
Venkataraman
,
S. K.
, and
H. H.
Winter
, “
Finite shear strain behavior of a crosslinking polydimethylsiloxane near its gel point
,”
Rheol. Acta
29
,
423
432
(
1990
).
58.
Verduin
,
H.
,
B. J.
de Gans
, and
J. K. G.
Dhont
, “
Shear induced structural changes in a gel-forming suspension studied by light scattering and rheology
,”
Langmuir
12
,
2947
2955
(
1996
).
59.
Wachsstock
,
D. H.
,
W. H.
Schwarz
, and
T. D.
Pollard
, “
Cross-linker dynamics determine the mechanical properties of actin gels
,”
Biophys. J.
66
,
801
809
(
1994
).
60.
Watanabe
,
H.
,
M. L.
Yao
,
A.
Yamagishi
,
K.
Osaki
,
T.
Shitata
,
H.
Niwa
, and
Y.
Morishima
, “
Nonlinear rheological behavior of a concentrated spherical silica suspension
,”
Rheol. Acta
35
,
433
445
(
1996
).
61.
Wierenga
,
A.
,
A. P.
Philipse
,
H. N. W.
Lekkerkerker
, and
D. V.
Boger
, “
Aqueous dispersions of colloidal boehmite: Structure, dynamics, and yield stress of rod gels
,”
Langmuir
14
,
55
65
(
1998
).
62.
Wilkins
,
G. M. H.
,
P. T.
Spicer
, and
M. J.
Solomon
, “
Colloidal system to explore structural and dynamical transitions in rod networks, gels, and glasses
,”
Langmuir
25
,
8951
8959
(
2009
).
64.
Winter
,
H. H.
, “
The critical gel: Universal material state between liquid and solid
,”
NATO Sci. Ser., Ser. C
568
,
439
470
(
2002
).
63.
Winter
,
H. H.
, and
F.
Chambon
, “
Analysis of linear viscoelasticity of a crosslinking polymer at the gel point
,”
J. Rheol.
30
,
367
382
(
1986
).
65.
Yin
,
G.
, and
M. J.
Solomon
, “
Soft glassy rheology model applied to stress relaxation of a thermoreversible colloidal gel
,”
J. Rheol.
52
,
785
800
(
2008
).
66.
Yoshimura
,
A.
, and
R. K.
Prud’homme
, “
Wall slip corrections for Couette and parallel disk viscometers
,”
J. Rheol.
32
,
53
67
(
1988
).
67.
Zhang
,
Z.
,
N.
Krishna
,
M. P.
Lettinga
,
J.
Vermant
,
E.
Grelet
, “
Reversible gelation of rod-like viruses grafted with thermoresponsive polymers
,”
Langmuir
25
,
2437
2442
(
2009
).
68.
Zolzer
,
U.
, and
H. F.
Eicke
, “
Free oscillatory shear measurements—An interesting application of constant stress rheometers in the creep mode
,”
Rheol. Acta
32
,
104
107
(
1993
).
You do not currently have access to this content.