We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits discontinuous shear thickening. Using magnetic resonance imaging (MRI), the local properties of the flow are obtained by the determination of local velocity profiles and concentrations in a Couette cell. For low rotational rates, we observe shear localization characteristic of yield stress fluids. When the overall shear rate is increased, the width of the sheared region increases. The discontinuous shear thickening is found to set in at the end of this shear localization regime when all of the fluid is sheared: the existence of a nonflowing region, thus, seems to prevent or delay shear thickening. Macroscopic observations using different measurement geometries show that the smaller the gap of the shear cell, the lower the shear rate at which shear thickening sets in. We, thus, propose that the discontinuous shear thickening of cornstarch suspensions is a consequence of dilatancy: the system under flow attempts to dilate but instead undergoes a jamming transition, because it is confined. This proposition is confirmed by an independent measurement of the dilation of the suspension as a function of the shear rate. It is also explains the MRI observations: when flow is localized, the nonflowing region plays the role of a “dilatancy reservoir” which allows the material to be sheared without jamming.

1.
Ackerson
,
B. J.
, “
Shear induced order and shear processing of model hard sphere suspensions
,”
J. Rheol.
34
,
553
590
(
1990
).
2.
Ball
,
R. C.
, and
J. R.
Melrose
, “
Lubrication breakdown in hydrodynamic simulations of concentrated colloids
,”
Adv. Colloid Interface Sci.
59
,
19
30
(
1995
).
3.
Barnes
,
H. A.
, “
Shear-thickening (‘dilatancy’) in suspensions of non aggregating solid particles dispersed in Newtonian liquids
,”
J. Rheol.
33
,
329
366
(
1989
).
4.
Bender
,
J. W.
, and
N. J.
Wagner
, “
Reversible shear thickening in monodisperse and bidisperse colloidal dispersion
,”
J. Rheol.
40
,
899
916
(
1996
).
5.
Berthier
,
L.
,
J. L.
Barrat
, and
J.
Kurchan
, “A two-time-scale, two-temperature scenario for nonlinear rheology,”
Phys. Rev. E
61
,
5464
(
2000
).
6.
Bertrand
,
E.
,
J.
Bibette
, and
V.
Schmitt
, “
From shear thickening to shear-induced jamming
,”
Phys. Rev. E
66
,
060401
(
2002
).
7.
Bischoff White
,
E. E.
,
M.
Chellamuthu
, and
J. P.
Rothstein
, “
Extensional rheology of a shear-thickening cornstarch and water suspension
,”
Rheol. Acta
49
,
119
129
(
2010
).
9.
Boersma
,
W. H.
,
J.
Laven
, and
H. N.
Stein
, “
Shear thickening (dilatancy) in concentrated dispersions
,”
AIChE J.
36
,
321
332
(
1990
).
10.
Bonn
D.
,
S.
Rodts
,
M.
Groenink
,
S.
Rafai
,
N.
Shahidzadeh-Bonn
, and
P.
Coussot
, “
Some applications of magnetic resonance imaging in fluid mechanics: Complex flows and complex fluids
,”
Annu. Rev. Fluid Mech.
40
,
209
(
2008
).
11.
Bonn
,
D.
, and
M.
Denn
, “
Yield stress fluids slowly yield to analysis
,”
Science
324
,
1401
1402
(
2009
).
13.
Brown
,
E.
,
N. A.
Forman
,
C. S.
Orellana
,
H.
Zhang
,
B.
Maynor
,
D.
Betts
,
J. M.
DeSimone
, and
H. M.
Jaeger
, “
On the generality of shear thickening in suspensions
,”
Nature Mater.
9
,
220
224
(
2010
).
12.
Brown
,
E.
, and
H. M.
Jaeger
, “
Dynamic jamming point for shear thickening suspensions
,”
Phys. Rev. Lett.
103
,
086001
(
2009
).
14.
Brown
,
E.
, and
H. M.
Jaeger
, “
The role of dilation and confining stresses in shear thickening of dense suspensions
,” http://arxiv.org/abs/1010.4921 (
2012
).
15.
Cates
,
M. E.
,
M. D.
Haw
, and
C. B.
Holmes
, “
Dilatancy, jamming, and the physics of granulation
,”
J. Phys.: Condens. Matter
17
,
S2517
S2531
(
2005
).
16.
Chen
,
L. B.
,
B. J.
Ackerson
, and
C. F.
Zukoski
, “
Rheological consequences of microstructural transitions in colloidal crystals
,”
J. Rheol.
38
(
1–25
),
193
216
(
1994
).
18.
Cho
,
K. S.
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
,
747
758
(
2005
).
19.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Viscosity bifurcation in thixotropic, yielding fluids
,”
J. Rheol.
46
,
573
589
(
2002a
).
20.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Avalanche behavior in yield stress Fluids
,”
Phys. Rev. Lett.
88
(
17
),
175501
(
2002b
).
21.
da Cruz
,
F.
,
S.
Emam
,
M.
Prochnow
,
J.-N.
Roux
, and
F.
Chevoir
, “
Rheophysics of dense granular flows: Discrete simulation of plane shear flows
,”
Phys. Rev. E
,
72
,
021309
(
2005
).
22.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
23.
Fall
,
A.
,
N.
Huang
,
F.
Bertrand
,
G.
Ovarlez
, and
D.
Bonn
, “
Shear thickening in cornstarch suspension is a re-entrant jamming transition
,”
Phys. Rev. Lett.
100
,
018301
(
2008
).
24.
Fall
,
A.
,
F.
Bertrand
,
G.
Ovarlez
, and
D.
Bonn
, “
Yield stress and shear banding in granular materials
,”
Phys. Rev. Lett.
103
,
178301
(
2009
).
25.
Fall
,
A.
,
A.
Lemaitre
,
F.
Bertrand
,
D.
Bonn
, and
G.
Ovarlez
, “
Shear thickening and migration in granular suspension
,”
Phys. Rev. Lett.
105
,
268303
(
2010
).
26.
Franks
,
G. V.
,
Z.
Zhou
,
N. J.
Duin
, and
D. V.
Boger
, “
Effect of interparticle forces on shear thickening of oxide suspensions
,”
J. Rheol.
36
(
5
),
845
883
(
2000
).
27.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
28.
Gopalakrishnan
,
V.
, and
C. F.
Zukoski
, “
Effect of attractions on shear thickening in dense suspensions
,”
J. Rheol.
48
,
1321
1344
(
2004
).
29.
Haw
,
M. D.
, “
Jamming, two-fluid behaviour, and ‘self-filtration’ in concentrated particulate suspensions
,”
Phys. Rev. Lett.
92
,
185506
(
2004
).
30.
Hoffman
,
R. L.
, “
Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability
,”
J. Rheol.
16
,
155
173
(
1972
).
31.
Hoffman
,
R. L.
, “
Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests
,”
J. Colloid. Interface Sci.
46
,
491
506
(
1974
).
32.
Holmes
C. B.
,
M. E.
Cates
,
M.
Fuchs
, and
P.
Sollich
, “
Glass transitions and shear thickening suspension rheology
,”
J. Rheol.
49
,
237
(
2005
).
33.
Huang
,
N.
, and
D.
Bonn
, “
Viscosity of a dense suspension in Couette flow
,”
J. Fluid Mech.
590
,
497
507
(
2007
).
34.
Isa
,
L.
,
R.
Besseling
,
A. N.
Morozov
, and
W. C. K.
Poon
, “
Velocity oscillations in microfluidic flows of concentrated colloidal suspensions
,”
Phys. Rev. Lett.
102
,
058302
(
2009
).
35.
Klein
,
C. O.
,
H. W.
Spiess
,
A.
Calin
,
C.
Balan
, and
M.
Wilhelm
, “
Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response
,”
Macromolecules
,
40
,
4250
4259
(
2007
).
36.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
).
37.
Laun
,
H. M.
,
R.
Bung
,
S.
Hess
,
W.
Loose
,
O.
Hesse
,
K.
Hahn
,
E.
Hadicke
,
R.
Hingmann
,
F.
Schmidt
, and
P.
Lindner
, “
Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow
,”
J. Rheol.
36
,
743
(
1992
).
38.
Leighton
,
D.
, and
A.
Acrivos
, “
Measurement of shear-induced self-diffusion in concentrated suspensions of spheres
,”
J. Fluid Mech.
177
,
109
131
(
1987a
).
39.
Leighton
,
D.
, and
A.
Acrivos
, “
The shear-induced migration of particles in concentrated suspensions
,”
J. Fluid Mech.
181
,
415
439
(
1987b
).
40.
Lemaître
A.
,
J.-N.
Roux
, and
F.
Chevoir
, “
What do dry granular flows tell us about dense non-Brownian suspension rheology?
,”
Rheol. Acta
48
,
925
(
2009
).
41.
Lootens
D.
,
H.
Van Damme
, and
P.
Hebraud
, “
Giant stress fluctuations at the jamming transition
,”
Phys. Rev. Lett.
90
,
178301
(
2003
).
42.
Lootens
D.
,
H.
Van damme
,
Y.
Hemar
and
P.
Hebraud
, “
Dilatant flow of concentrated suspensions of rough particles
,”
Phys. Rev. Lett.
95
,
268302
(
2005
).
43.
Macias
,
E. R.
,
F.
Bautista
,
J. F. A.
Soltero
,
J. E.
Puig
,
P.
Attane
, and
O.
Manero
, “
On the shear thickening flow of dilute CTAT worm-like micellar solutions
,”
J. Rheol.
47
(
3
),
643
658
(
2003
).
44.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening
,”
J. Chem. Phys.
117
(
22
),
10291
10302
(
2002
).
45.
Melrose
,
J. R.
, and
R. C.
Ball
, “
Contact networks in continuously shear thickening colloids
,”
J. Rheol.
48
,
961
978
(
2004a
).
46.
Melrose
,
J. R.
, and
R. C.
Ball
, “
Continuous shear thickening transitions in model concentrated colloids—The role of interparticle forces
,”
J. Rheol.
48
,
937
960
(
2004b
).
47.
Merkt
,
F. S.
,
R. D.
Deegan
,
D. I.
Goldman
,
E. C.
Rericha
, and
H. L.
Swinney
, “
Persistent holes in a fluid
,”
Phys. Rev. Lett.
92
,
184501
(
2004
).
48.
Mills
,
P.
, and
P.
Snabre
, “
Apparent viscosity and particle pressure of a concentrated suspension of a non-Brownian hard spheres near the jamming transition
,”
Eur. Phys. J. E
30
,
309
316
(
2009
).
49.
Moller
,
P.
,
J.
Mewis
, and
D.
Bonn
, “
Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice
,”
Soft Matter
2
,
274
283
(
2006
).
50.
Møller
,
P. C. F.
,
S.
Rodts
,
M. A. J.
Michels
, and
D.
Bonn
, “
Shear banding and yield stress in soft glassy materials
,”
Phys. Rev. E
77
,
041507
(
2008
).
51.
Møller
,
P. C. F.
,
A.
Fall
,
V.
Chikkadi
,
D.
Derks
, and
D.
Bonn
, “
An attempt to categorize yield stress fluid behaviour
,”
Philos. Trans. R. Soc. London
367
,
5139
(
2009
).
52.
O’Brien
,
V. T.
, and
M. E.
Mackay
, “
Stress components and shear thickening of concentrated hard sphere suspensions
,”
Langmuir
16
,
7931
7938
(
2000
).
55.
Ovarlez
,
G.
,
F.
Bertrand
, and
S.
Rodts
, “
Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging
,”
J. Rheol.
50
,
256
292
(
2006
).
53.
Ovarlez
,
G.
,
K.
Krishan
, and
S.
Cohen-Addad
, “
Investigation of shear banding in three-dimensional foams
,”
Europhys. Lett.
91
,
68005
(
2010
).
54.
Ovarlez
,
G.
,
S.
Rodts
,
P.
Coussot
,
J.
Goyon
, and
A.
Colin
, “
Wide gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging
,”
Phys. Rev. E
78
,
036307
(
2008
).
56.
Phung
,
T. N.
,
J. F.
Brady
, and
G.
Bossis
, “
Stokesian dynamics simulation of Brownian suspensions
,”
J. Fluid Mech.
313
,
181
207
(
1996
).
57.
Raynaud
,
J. S.
,
P.
Moucheront
,
J. C.
Baudez
,
F.
Bertrand
,
J. P.
Guilbaud
, and
P.
Coussot
, “
Direct determination by NMR of the thixotropic and yielding behavior of suspensions
,”
J. Rheol.
46
,
709
732
(
2002
).
58.
Reynolds
,
O.
, “
On the dilatancy of media composed of rigid particles in contact, with experimental illustrations
,”
Philos. Mag. J. Sci.
20
(
S5
),
469
481
(
1885
).
59.
Rodts
,
S.
,
J. C.
Baudez
, and
P.
Coussot
, “
From ‘discrete’ to ‘continuum’ flow in foams
,”
Europhys. Lett.
69
,
636
642
(
2005
).
60.
Sellitto
,
M.
, and
J.
Kurchan
, “
Shear-thickening and entropy-driven reentrance
,”
Phys. Rev. Lett.
95
,
236001
(
2005
).
61.
Yu
,
W.
,
P.
Wang
, and
C.
Zhou
, “
General stress decomposition in nonlinear oscillatory shear flow
,”
J. Rheol.
,
53
,
215
238
(
2009
).
62.
Wagner
,
N. J.
, and
J. F.
Brady
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
62
(
10
),
27
32
(
2009
).
63.
van der Werff
,
J. C.
, and
C. G.
De
Kruif, “
Hard-sphere colloidal dispersion: The scaling of rheological properties with particle size, volume fraction, and shear rate
,”
J. Rheol.
33
,
421
454
(
1989
).
64.
Williamson
,
R. V.
, and
W. W.
Heckert
, “
Some properties of dispersions of quicksand type
,”
Ind. Eng. Chem.
23
,
667
670
(
1931
).
You do not currently have access to this content.