Large amplitude oscillatory shear (LAOS) is an increasingly popular nonlinear rheological test method, and the interpretation of the measurements is still an active area of research. Here, we demonstrate a new method whereby the nonlinear parameters of a popular constitutive equation used to model polymeric and other viscoelastic systems, the Giesekus model, may be determined directly from LAOS measurements without complicated, nonlinear model fitting. We define the stress response of the sample as an expansion in deformation strain and oscillation frequency. To leading order in strain, we derive the explicit analytic expressions for the first three harmonics of the stress response during LAOS for the Giesekus constitutive model. This allows for rapid determination of the Giesekus model parameters, including the nonlinear coupling parameter, directly from plots of the response obtained from modern rheological instruments. We demonstrate the validity, utility, and limits of this new method on a well-studied wormlike micelle (WLM) surfactant solution, cetyltrimethylammonium bromide (CTAB), and water. This robust and simple approach is especially advantageous for systems where steady shearing in the nonlinear regime is problematic and can provide rapid determination of parameters in rheological constitutive equations.

1.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
John Wiley & Sons
,
New York
,
1987
), Vol.
1
.
2.
Calin
,
A.
,
M.
Wilhelm
, and
C.
Balan
, “
Determination of the non-linear parameter (mobility factor) of the Giesekus constitutive model using LAOS procedure
,”
J. Non-Newtonian Fluid Mech.
165
(
23–24
),
1564
1577
(
2010
).
3.
Cappelaere
,
E.
,
R.
Cressely
, and
J. P.
Decruppe
, “
Linear and non-linear rheological behaviour of salt-free aqueous CTAB solutions
,”
Colloids Surf., A
104
(
2–3
),
353
374
(
1995
).
4.
Cox
,
W. P.
, and
E. H.
Merz
, “
Correlation of dynamic and steady flow viscosities
,”
J. Polym. Sci.
28
(
118
),
619
622
(
1958
).
5.
Cromer
,
M.
,
L. P.
Cook
, and
G. H.
McKinley
, “
Extensional flow of wormlike micellar solutions
,”
Chem. Eng. Sci.
64
(
22
),
4588
4596
(
2009
).
6.
Decruppe
,
J. P.
,
R.
Cressely
,
R.
Makhloufi
, and
E.
Cappelaere
, “
Flow birefringence experiments showing a shear-banding structure in a CTAB solution
,”
Colloid Polym. Sci.
273
(
4
),
346
351
(
1995
).
7.
Dhont
,
J. K. G.
, and
N. J.
Wagner
, “
Superposition rheology
,”
Phys. Rev. E
63
(
2
),
1
13
(
2001
).
8.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
(
6
),
1427
1458
(
2008
).
9.
Ewoldt
,
R. H.
, and
G. H.
McKinley
, “
On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves
,”
Rheol. Acta
49
(
2
),
213
219
(
2010
).
33.
Giacomin
,
A. J.
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large amplitude oscillatory shear flow from the corotational Maxwell model
,”
Rheology Research Center
,
University of Wisconsin-Madison
,
Madison, WI.
, Vol.
187
, pp.
1
79
(
2010
).
10.
Giacomin
,
A. J.
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
(
19–20
),
1081
1099
(
2011
).
11.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
(
1–2
),
69
109
(
1982
).
12.
Helgeson
,
M. E.
,
T. K.
Hodgdon
,
E. W.
Kaler
, and
N. J.
Wagner
, “
A systematic study of equilibrium structure, thermodynamics, and rheology of aqueous CTAB/NaNO3 wormlike micelles
,”
J. Colloid Interface Sci.
349
(
1
),
1
12
(
2010
).
13.
Helgeson
,
M. E.
,
M. D.
Reichert
,
Y. T.
Hu
, and
N. J.
Wagner
, “
Relating shear banding, structure, and phase behavior in wormlike micellar solutions
,”
Soft Matter
5
(
20
),
3858
3869
(
2009
).
14.
Helgeson
,
M. E.
,
P. A.
Vasquez
,
E. W.
Kaler
, and
N. J.
Wagner
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
(
3
),
727
756
(
2009
).
15.
Hyun
,
K.
, and
M.
Wilhelm
, “
Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems
,”
Macromolecules
42
(
1
),
411
422
(
2009
).
16.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Progress in Polymer Science
36
(
12
),
1697
1753
(
2011
).
17.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Boston Butterworth
,
Boston, MA
,
1988
).
34.
Lerouge
,
S.
and
J. F.
Berret
, “
Shear-induced transitions and instabilities in surfactant wormlike micelles
,”
Polymer Characterization: Rheology, Laser Interferometry, Electrooptics.
230
,
1
71
(
2010
).
18.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
).
19.
Liu
,
J. Y.
,
W.
Yu
,
W.
Zhou
, and
C. X.
Zhou
, “
Control on the topological structure of polyolefin elastomer by reactive processing
,”
Polymer
50
(
2
),
547
552
(
2009
).
20.
Lopez-Barron
,
C. R.
, and
N. J.
Wagner
, “
Solvent isotope effect on the microstructure and rheology of cationic worm-like micelles near the isotropic-nematic transition
,”
Soft Matter
7
(
22
),
10856
10863
(
2011
).
21.
Macosko
,
C. W.
,
Rheology: Principles, Measurements and Applications
(
Wiley-VCH, Inc.
,
New York
,
1994
).
22.
Nam
,
J. G.
,
K. H.
Ahn
,
S. J.
Lee
, and
K.
Hyun
, “
First normal stress difference of entangled polymer solutions in large amplitude oscillatory shear flow
,”
J. Rheol.
54
(
6
),
1243
1266
(
2010
).
23.
Nam
,
J. G.
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
Prediction of normal stresses under large amplitude oscillatory shear flow
,”
J. Non-Newtonian Fluid Mech.
150
(
1
),
1
10
(
2008
).
24.
Pearson
,
D. S.
, and
W. E.
Rochefort
, “
Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields
,”
J. Polym. Sci., Part B: Polym. Phys.
20
(
1
),
83
98
(
1982
).
25.
Rehage
,
H.
, and
H.
Hoffmann
, “
Viscoelastic surfactant solutions: Model systems for rheological research
,”
Mole. Phys.: Int. J. Interface Chem. Phys.
74
(
5
),
933
973
(
1991
).
26.
Schubert
,
B. A.
,
E. W.
Kaler
, and
N. J.
Wagner
, “
The microstructure and rheology of mixed cationic/anionic wormlike micelles
,”
Langmuir
19
(
10
),
4079
4089
(
2003
).
27.
Sim
,
H. G.
,
K. H.
Ahn
, and
S. J.
Lee
, “
Three-dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow
,”
J. Rheol.
47
(
4
),
879
895
(
2003
).
28.
Wagner
,
M. H.
,
V. H.
Rolon-Garrido
,
K.
Hyun
, and
M.
Wilhelm
, “
Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers
,”
J. Rheol.
55
(
3
),
495
516
(
2011
).
29.
Wilhelm
,
M.
,
D.
Maring
, and
H. W.
Spiess
, “
Fourier-transform rheology
,”
Rheol. Acta
37
(
4
),
399
405
(
1998
).
30.
Yesilata
,
B.
,
C.
Clasen
, and
G. H.
McKinley
, “
Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions
,”
J. Non-Newtonian Fluid Mech.
133
(
2–3
),
73
90
(
2006
).
31.
Yu
,
W.
,
P.
Wang
, and
C. X.
Zhou
, “
General stress decomposition in nonlinear oscillatory shear flow
,”
J. Rheol.
53
(
1
),
215
238
(
2009
).
32.
See supplementary material at http://dx.doi.org/10.1122/1.3684751 for the complete derivation of Eq. 13-29 and associated Wolfram Mathematica v8 ® solutions. Also, a discussion is included on the sensitivity of the nonlinear parameter (α) as it is determined by the Giesekus model for LAOS using the methods described in the manuscript.

Supplementary Material

You do not currently have access to this content.