The rheological behavior and microstructure of branched, cationic wormlike micellar (WLM) solutions of 40 mM erucyl bis(hydroxyethyl)methylammonium chloride (EHAC) are studied as a function of added salt (sodium salicylate) concentration, temperature, and shear rate via Rheosmall-angle light scattering (Rheo-SALS). These WLM solutions exhibit shear-enhanced concentration fluctuations leading to shear-induced phase separation (SIPS), manifested as visual turbidity under shear and the appearance of a characteristic “butterfly” scattering pattern in Rheo-SALS experiments. Flow kinematics measurements in a Couette geometry are used to determine the relationship between SIPS and shear banding, i.e., the splitting of the flow into shear bands with different local shear rates. Modeling using the Giesekus constitutive equation aids in discrimination between banding and nonbanding solutions. The combination of Rheo-SALS, dynamic rheology, velocimetry, and constitutive equation modeling allows detailed exploration of the relationship between SIPS, shear banding, fluid microstructure, and the equilibrium phase behavior.

1.
Bautista
,
F.
,
M.
Munoz
,
J.
Castillo-Tejas
,
J. H.
Perez-Lopez
,
J. E.
Puig
, and
O.
Manero
, “
Critical phenomenon analysis of shear-banding flow in polymer-like micellar solutions. 1. Theoretical approach
,”
J. Phys. Chem. B
113
,
16101
16109
(
2009
).
2.
Berret
,
J. F.
,
G.
Porte
, and
J. P.
Decruppe
, “
Inhomogeneous shear rows of wormlike micelles: A master dynamic phase diagram
,”
Phys. Rev. E
55
,
1668
1676
(
1997
).
3.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymer Liquids
(
Wiley
,
New York
,
1987
).
4.
Boltenhagen
,
P.
,
Y. T.
Hu
,
E. F.
Matthys
, and
D. J.
Pine
, “
Observation of bulk phase separation and coexistence in a sheared micellar solution
,”
Phys. Rev. Lett.
79
,
2359
2362
(
1997
).
5.
Boukany
,
P. E.
, and
S. Q.
Wang
, “
Shear banding or not in entangled DNA solutions depending on the level of entanglement
,”
J. Rheol.
53
,
73
83
(
2009
).
6.
Britton
,
M. M.
, and
P. T.
Callaghan
, “
Shear banding instability in wormlike micellar solutions
,”
Eur. Phys. J. B
7
,
237
249
(
1999
).
7.
Callaghan
,
P.
, “
Rheo NMR and shear banding
,”
Rheol. Acta
47
,
243
255
(
2008
).
8.
Candau
,
S. J.
,
A.
Khatory
,
F.
Lequeux
, and
F.
Kern
, “
Rheological behavior of wormlike micelles: Effect of salt content
,”
J. Phys. IV
3
,
197
209
(
1993
).
9.
Candau
,
S. J.
, and
F.
Lequeux
, “
Self-assembling surfactant systems
,”
Curr. Opin. Colloid Interface Sci.
2
,
420
423
(
1997
).
10.
Cappelaere
,
E.
,
J. F.
Berret
,
J. P.
Decruppe
,
R.
Cressely
, and
P.
Lindner
, “
Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: Evidence of a shear-induced phase transition
,”
Phys. Rev. E
56
,
1869
1878
(
1997
).
11.
Cappelaere
,
E.
, and
R.
Cressely
, “
Shear banding structure in viscoelastic micellar solutions
,”
Colloid Polym. Sci.
275
,
407
418
(
1997
).
12.
Carvalho
,
M. S.
,
M.
Padmanabhan
, and
C. W.
Macosko
, “
Single-point correction for parallel disks rheometry
,”
J. Rheol.
38
,
1925
1936
(
1994
).
13.
Cates
,
M. E.
, and
S. J.
Candau
, “
Statics and dynamics of worm-like surfactant micelles
,”
J. Phys.: Condens. Matter
2
,
6869
6892
(
1990
).
14.
Cates
,
M. E.
, “
Dynamics of surfactant solutions
,”
Phys. Scr., T
49A
,
107
110
(
1993
).
15.
Cates
,
M. E.
, “
Flow behaviour of entangled surfactant micelles
,”
J. Phys.: Condens. Matter
8
,
9167
9176
(
1996
).
16.
Cates
,
M. E.
, and
S. M.
Fielding
, “
Rheology of giant micelles
,”
Adv. Phys.
55
,
799
879
(
2006
).
17.
Cates
,
M. E.
, and
S. M.
Fielding
, “
Theoretical rheology of giant micelles
,” in
Giant Micelles
, edited by
R.
Zana
and
E. W.
Kaler
(
CRC
,
Boca Raton
,
2007
), pp.
109
161
.
18.
Chellamuthu
,
M.
, and
J. R.
Rothstein
, “
Distinguishing between linear and branched wormlike micelle solutions using extensional rheology measurements
,”
J. Rheol.
52
,
865
884
(
2008
).
19.
Cristobal
,
G.
,
J.
Rouch
,
J.
Curely
, and
P.
Panizza
, “
Phase separation in living micellar networks
,”
Phys. A
268
,
50
64
(
1999
).
20.
Delgado
,
J.
,
H.
Kriegs
, and
R.
Castillo
, “
Flow velocity profiles and shear banding onset in a semidilute wormlike micellar system under Couette flow
,”
J. Phys. Chem. B
113
,
15485
15494
(
2009
).
21.
Dhont
,
J. K. G.
, and
W. J.
Briels
, “
Gradient and vorticity banding
,”
Rheol. Acta
47
,
257
281
(
2008
).
22.
Drappier
,
J.
,
D.
Bonn
,
J.
Meunier
,
S.
Lerouge
,
J. P.
Decruppe
, and
F.
Bertrand
, “
Correlation between birefringent bands and shear bands in surfactant solutions
,”
J. Stat. Mech.: Theory Exp.
4
,
04003
(
2006
).
23.
Fall
,
A.
,
F.
Bertrand
,
G.
Ovarlez
, and
D.
Bonn
, “
Yield stress and shear banding in granular suspensions
,”
Phys. Rev. Lett.
103
,
178301
(
2009
).
24.
Fielding
,
S. M.
, and
P. D.
Olmsted
, “
Flow phase diagrams for concentration-coupled shear banding
,”
Eur. Phys. J. E
11
,
65
83
(
2003
).
25.
Fielding
,
S. M.
,
M. E.
Cates
, and
P.
Sollich
, “
Shear banding, aging and noise dynamics in soft glassy materials
,”
Soft Matter
5
,
2378
2382
(
2009
).
26.
Fischer
,
E.
, and
P. T.
Callaghan
, “
Shear banding and the isotropic-to-nematic transition in wormlike micelles
,”
Phys. Rev. E
64
,
011501
(
2001
).
27.
Ganapathy
,
R.
, and
A. K.
Sood
, “
Nonlinear flow of wormlike micellar gels: Regular and chaotic time-dependence of stress, normal force and nematic ordering
,”
J. Non-Newtonian Fluid Mech.
149
,
78
86
(
2008
).
28.
Granek
,
R.
, and
M. E.
Cates
, “
Stress-relaxation in living polymers-results from a poisson renewal model
,”
J. Chem. Phys.
96
,
4758
4767
(
1992
).
29.
Greco
,
F.
, and
R. C.
Ball
, “
Shear-band formation in a non-Newtonian fluid model with a constitutive instability
,”
J. Non-Newtonian Fluid Mech.
69
,
195
206
(
1997
).
30.
Hashimoto
,
T.
, and
T.
Kume
, “
Butterfly light-scattering pattern in shear-enhanced concentration fluctuations in polymer-solutions and anomaly at high shear rates
,”
J. Phys. Soc. Jpn.
61
,
1839
1843
(
1992
).
31.
Helfand
,
E.
, and
G. H.
Fredrickson
, “
Large fluctuations in polymer-solutions under shear
,”
Phys. Rev. Lett.
62
,
2468
2471
(
1989
).
32.
Helgeson
,
M. E.
,
M. D.
Reichert
,
Y. T.
Hu
, and
N. J.
Wagner
, “
Relating shear banding, structure, and phase behavior in wormlike micellar solutions
,”
Soft Matter
5
,
3858
3869
(
2009a
).
33.
Helgeson
,
M. E.
,
P. A.
Vasquez
,
E. W.
Kaler
, and
N. J.
Wagner
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
,
727
756
(
2009b
).
34.
Helgeson
,
M. E.
,
L.
Porcar
,
C.
Lopez-Barron
, and
N. J.
Wagner
, “
Direct observation of flow-concentration coupling in a shear-banding fluid
,”
Phys. Rev. Lett.
105
,
084501
(
2010
).
35.
Hu
,
Y. T.
,
P.
Boltenhagen
, and
D. J.
Pine
, “
Shear thickening in low-concentration solutions of wormlike micelles. I. Direct visualization of transient behavior and phase transitions
,”
J. Rheol.
42
,
1185
1208
(
1998
).
36.
Hu
,
Y. T.
, and
A.
Lips
, “
Kinetics and mechanism of shear banding in an entangled micellar solution
,”
J. Rheol.
49
,
1001
1027
(
2005
).
37.
Kadoma
,
I. A.
, and
J. W.
vanEgmond
, “
‘Tuliplike’ scattering patterns in wormlike micelles under shear flow
,”
Phys. Rev. Lett.
76
,
4432
4435
(
1996
).
38.
Kern
,
F.
,
F.
Lequeux
,
R.
Zana
, and
S. J.
Candau
, “
Dynamical properties of salt-free viscoelastic micellar solutions
,”
Langmuir
10
,
1714
1723
(
1994
).
39.
Khatory
,
A.
,
F.
Kern
,
F.
Lequeux
,
J.
Appell
,
G.
Porte
,
N.
Morie
,
A.
Ott
, and
W.
Urbach
, “
Entangled versus multiconnected network of wormlike micelles
,”
Langmuir
9
,
933
939
(
1993
).
40.
Kume
,
T.
,
T.
Hashimoto
,
T.
Takahashi
, and
G. B.
Fuller
, “
Rheo-optical studies of shear-induced structures in semidilute polystyrene solutions
,”
Macromolecules
30
,
7232
7236
(
1997
).
41.
Lerouge
,
S.
, and
J. F.
Berret
, “
Shear-induced transitions and instabilities in surfactant wormlike micelles
,”
Polymer Characterization: Rheology, Laser Interferometry, Electrooptics
(
Springer-Verlag
,
Berlin, Germany
,
2010
), Vol.
230
, pp.
1
71
.
42.
Liberatore
,
M. W.
,
F.
Nettesheim
,
N. J.
Wagner
, and
L.
Porcar
, “
Spatially resolved small-angle neutron scattering in the 1-2 plane: A study of shear-induced phase-separating wormlike micelles
,”
Phys. Rev. E
73
,
020504
(
2006
).
43.
Liberatore
,
M. W.
,
F.
Nettesheim
,
P. A.
Vasquez
,
M. E.
Helgeson
,
N. J.
Wagner
,
E. W.
Kaler
,
L. P.
Cook
,
L.
Porcar
, and
Y. T.
Hu
, “
Microstructure and shear rheology of entangled wormlike micelles in solution
,”
J. Rheol.
53
,
441
458
(
2009
).
44.
Liu
,
C. H.
, and
D. J.
Pine
, “
Shear-induced gelation and fracture in micellar solutions
,”
Phys. Rev. Lett.
77
,
2121
2124
(
1996
).
45.
Lonetti
,
B.
,
J.
Kohlbrecher
,
L.
Willner
,
J. K. G.
Dhont
, and
M. P.
Lettinga
, “
Dynamic response of block copolymer wormlike micelles to shear flow
,”
J. Phys.: Condens. Matter
20
,
404207
(
2008
).
46.
Manneville
,
S.
,
A.
Colin
,
G.
Waton
, and
F.
Schosseler
, “
Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution
,”
Phys. Rev. E
75
,
061502
(
2007
).
47.
Manneville
,
S.
, “
Recent experimental probes of shear banding
,”
Rheol. Acta
47
,
301
318
(
2008
).
48.
Mie
,
G.
, “
Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions
,”
Ann. Phys.
25
,
377
445
(
1908
).
49.
Miller
,
E.
, and
J. P.
Rothstein
, “
Transient evolution of shear-banding wormlike micellar solutions
,”
J. Non-Newtonian Fluid Mech.
143
,
22
37
(
2007
).
50.
Moller
,
P. C. F.
,
S.
Rodts
,
M. A. J.
Michels
, and
D.
Bonn
, “
Shear banding and yield stress in soft glassy materials
,”
Phys. Rev. E
77
,
041507
(
2008
).
51.
Moses
,
E.
,
T.
Kume
, and
T.
Hashimoto
, “
Shear microscopy of the butterfly pattern in polymer mixtures
,”
Phys. Rev. Lett.
72
,
2037
2040
(
1994
).
52.
Murase
,
H.
,
T.
Kume
,
T.
Hashimoto
, and
Y.
Ohta
, “
Shear-induced structures in semidilute solution of ultrahigh molecular weight polyethylene at temperature close to equilibrium dissolution temperature
,”
Macromolecules
38
,
6656
6665
(
2005
).
53.
Nowak
,
M.
, “
Shear induced phase separation in cationic surfactant solutions around a rotating sphere
,”
Rheol. Acta
37
,
336
344
(
1998
).
54.
Olmsted
,
P. D.
, and
C. Y. D.
Lu
, “
Phase separation of rigid-rod suspensions in shear flow
,”
Phys. Rev. E
60
,
4397
4415
(
1999
).
55.
Onuki
,
A.
,
R.
Yamamoto
, and
T.
Taniguchi
, “
Phase separation in polymer solutions induced by shear
,”
J. Phys.
7
,
295
304
(
1997
).
56.
Raghavan
,
S. R.
, and
E. W.
Kaler
, “
Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails
,”
Langmuir
17
,
300
306
(
2001
).
57.
Raghavan
,
S. R.
,
H.
Edlund
, and
E. W.
Kaler
, “
Cloud-point phenomena in wormlike micellar systems containing cationic surfactant and salt
,”
Langmuir
18
,
1056
1064
(
2002
).
58.
Rangelnafaile
,
C.
,
A. B.
Metzner
, and
K. F.
Wissbrun
, “
Analysis of stress-induced phase separations in polymer-solutions
,”
Macromolecules
17
,
1187
1195
(
1984
).
59.
Saito
,
S.
,
S.
Koizumi
,
K.
Matsuzaka
,
S.
Suehiro
, and
T.
Hashimoto
, “
Light scattering and small-angle neutron scattering studies of structures in a semidilute polymer solution induced under oscillatory shear flow
,”
Macromolecules
33
,
2153
2162
(
2000
).
60.
Schubert
,
B. A.
,
N. J.
Wagner
,
E. W.
Kaler
, and
S. R.
Raghavan
, “
Shear-induced phase separation in solutions of wormlike micelles
,”
Langmuir
20
,
3564
3573
(
2004
).
61.
Spenley
,
N. A.
,
M. E.
Cates
, and
T. C. B.
McLeish
, “
Nonlinear rheology of wormlike micelles
,”
Phys. Rev. Lett.
71
,
939
942
(
1993
).
62.
Tlusty
,
T.
, and
S. A.
Safran
, “
Defect-induced phase separation in dipolar fluids
,”
Science
290
,
1328
1331
(
2000
).
63.
Tlusty
,
T.
, and
S. A.
Safran
, “
Entropic networks in colloidal self-assembly
,”
Philos. Trans. R. Soc. London, Ser. A
359
,
879
881
(
2001
).
64.
Verstrat
.
G.
, and
W.
Philippo
, “
Phase Separation in Flowing Polymer-Solutions
,”
J. Polym. Sci., Part C: Polym. Lett.
12
,
267
275
(
1974
).
65.
Waton
,
G.
,
B.
Michels
,
A.
Steyer
, and
F.
Schosseler
, “
Shear-induced demixing and shear-banding instabilities in dilute triblock copolymer solutions
,”
Macromolecules
37
,
2313
2321
(
2004
).
66.
Wheeler
,
E. K.
,
P.
Izu
, and
G. G.
Fuller
, “
Structure and rheology of wormlike micelles
,”
Rheol. Acta
35
,
139
149
(
1996
).
67.
Yanase
,
H.
,
P.
Moldenaers
,
J.
Mewis
,
V.
Abetz
,
J.
Vanegmond
, and
G. G.
Fuller
, “
Structure and dynamics of a polymer-solution subject to flow-induced phase-separation
,”
Rheol. Acta
30
,
89
97
(
1991
).
68.
Yesilata
,
B.
,
C.
Clasen
, and
G. H.
McKinley
, “
Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions
,”
J. Non-Newtonian Fluid Mech.
133
,
73
90
(
2006
).
69.
Zilman
,
A. G.
, and
S. A.
Safran
, “
Thermodynamics and structure of self-assembled networks
,”
Phys. Rev. E
66
,
051107
(
2002
).
70.
See supplementary material http://dx.doi.org/10.1122/1.3641517 for additional rheology data with temperature and Giesekus Model fitting of PIV data. This document can be reached through a direct link in the online article’s HTML reference section or via the homepage http://www.aip.org/pubservs/epaps.html.

Supplementary Material

You do not currently have access to this content.