This study examines the impact of dilute polymer solutions on the unique isolated secondary flows between concentric, rotating cylinders, namely Taylor-Couette (TC) flow. We mapped the stability of flow states using Newtonian and dilute polyethylene oxide (PEO) solutions over the Reynolds number range of − 100 < Reo < 500 and 0 < Rei < O(103), where subscripts ‘o’ and ‘i’ refer to outer and inner cylinders, respectively. Elasticity number (El) of the PEO fluids, defined as the ratio of elastic to inertial forces, ranges from O(10− 4) to O(10− 2). This work expands on previous studies by (a) significantly expanding the range of Rei, Reo, and El examined, (b) use of a consistent, conservative protocol for reaching flow states, and (c) rheological characterization of the solutions via shear and capillary breakup extensional rheometry. Using spectral analysis of flow visualization of the r-z or z-θ planes, we find the effect of El on the critical conditions for laminar and chaotic axisymmetric and nonaxisymmetric flow states is nonmonotonic and mode-dependent, with greater modification of higher order transitions involving small-scale features. While the critical conditions are modified by low El for all transitions, the flow states vary from those for Newtonian fluids at higher Rei and for the more elastic fluids.

1.
Andereck
,
C. D.
,
R.
Dickman
, and
H. L.
Swinney
, “
New flows in a circular Couette system with co-rotating cylinders
,”
Phys. Fluids
26
(
6
),
1395
1401
(
1983
).
2.
Andereck
,
C. D.
,
S. S.
Liu
, and
H. L.
Swinney
, “
Flow regimes in a circular Couette system with independently rotating cylinders
,”
J. Fluid Mech.
164
,
155
183
(
1986
).
3.
Anna
,
S. L.
, and
G. H.
McKinley
, “
Elasto-capillary thinning and breakup of model elastic liquids
,”
J. Rheol.
45
(
1
),
115
138
(
2001
).
4.
Avgousti
,
M.
, and
A. N.
Beris
, “
Non-axisymmetrical modes in viscoelastic Taylor-Couette flow
,”
J. Non-Newtonian Fluid Mech.
50
(
2-3
),
225
251
(
1993
).
5.
Baumert
,
B. M.
, and
S. J.
Muller
, “
Flow visualization of the elastic Taylor-Couette instability in Boger fluids
,”
Rheol. Acta
34
(
2
),
147
159
(
1995
).
6.
Baumert
,
B. M.
, and
S. J.
Muller
, “
Flow regimes in model viscoelastic fluids in a circular Couette system with independently rotating cylinders
,”
Phys. Fluids
9
(
3
),
566
586
(
1997
).
7.
Baumert
,
B. M.
, and
S. J.
Muller
, “
Axisymmetric and non-axisymmetric elastic and inertio-elastic instabilities in Taylor-Couette flow
,”
J. Non-Newtonian Fluid Mech.
83
(
1-2
),
33
69
(
1999
).
8.
Beard
,
D. W.
,
M. H.
Davies
, and
K.
Walters
, “
The stability of elastico-viscous flow between rotating cylinders
,”
J. Fluid Mech.
24
(
2
),
321
334
(
1966
).
9.
Berman
,
N. S.
, “
Drag reduction of highest molecular-weight fractions of polyethylene oxide
,”
Phys. Fluids
20
(
5
),
715
718
(
1977
).
10.
Bonn
,
D.
,
Y.
Amarouchene
,
C.
Wagner
,
S.
Douady
, and
O.
Cadot
, “
Turbulent drag reduction by polymers
,”
J. Phys. Condens. Matter
17
(
14
),
S1195
S1202
(
2005
).
11.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics
(
Wiley
,
New York
,
1977
).
12.
Brandstater
,
A.
, and
H. L.
Swinney
, “
Strange attractors in weakly turbulent Couette-Taylor flow
,”
Phys. Rev. A
35
,
2207
2220
(
1987
).
13.
Brostow
,
W.
,
H.
Ertepinar
, and
R. P.
Singh
, “
Flow of dilute polymer-solutions - chain conformations and degradation of drag reducers
,”
Macromolecules
23
,
5109
5118
(
1990
).
14.
Chen
,
E. B.
,
A. J.
Morales
,
C.-C.
Chen
,
A. A.
Donatelli
,
W. W.
Bannister
, and
B. T.
Cummings
, “
Fluorescein and poly(ethylene oxide) hose stream additives for improved firefighting effectiveness
,”
Fire Technol.
34
(
4
),
292
306
(
1998
).
15.
Choi
,
H. J.
,
S. T.
Lim
,
P. Y.
Lai
, and
C. K.
Chan
, “
Turbulent drag reduction and degradation of DNA
,”
Phys. Rev. Lett.
89
(
8
)
088302
(
2002
).
16.
Chossat
,
P.
, and
G.
Iooss
, “
The Couette-Taylor Problem
,” in
Applied Mathematical Sciences
(
Springer-Verlag
,
New York
,
1994
),
Vol. 102
.
17.
Crumeyrolle
,
O.
,
I.
Mutabazi
, and
M.
Grisel
, “
Experimental study of inertioelastic Couette-Taylor instability modes in dilute and semidilute polymer solutions
,”
Phys. Fluids
14
(
5
),
1681
1688
(
2002
).
18.
Denn
,
M. M.
, “
Fifty years of non-Newtonian fluid dynamics
,”
AIChE J.
50
(
10
),
2335
2345
(
2004
).
19.
Denn
,
M. M.
, and
J. J.
Roisman
, “
Rotational stability and measurement of normal stress functions in dilute polymer solutions
,”
AIChE J.
15
(
3
),
454
459
(
1969
).
20.
Dimitropoulos
,
C. D.
,
R.
Sureshkumar
, and
A. N.
Beris
, “
Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: Effect of the variation of rheological parameters
,”
J. Non-Newtonian Fluid Mech.
79
(
2-3
),
433
468
(
1998
).
21.
Donnelly
,
R. J.
,
K.
Park
,
R.
Shaw
, and
R. W.
Walden
, “
Early nonperiodic transitions in Couette flow
,”
Phys. Rev. Lett.
44
(
15
),
987
989
(
1980
).
22.
Doraiswamy
,
D.
, “
The origins of rheology: A short historical excursion
,”
Soc. Rheol. Newsl., Rheol. Bull.
71
(
1
),
1
9
(
2002
).
23.
Dubief
,
Y.
,
C. M.
White
,
V. E.
Terrapon
,
E. S. G.
Shaqfeh
,
P.
Moin
, and
S. K.
Lele
, “
On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows
,”
J. Fluid Mech.
514
,
271
280
(
2004
).
24.
Dutcher
,
C. S.
, and
S. J.
Muller
, “
Spatio-temporal mode dynamics and transitions to turbulence in high aspect ratio Newtonian Taylor-Couette flows
,”
J. Fluid Mech.
641
,
85
113
(
2009
)
25.
Entov
,
V. M.
, and
E. J.
Hinch
, “
Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid
,”
J. Non-Newtonian Fluid Mech.
72
,
31
53
(
1997
).
26.
Escudier
,
M. P.
,
F.
Presti
, and
S.
Smith
, “
Drag reduction in the turbulent pipe flow of polymers
,”
J. Non-Newtonian Fluid Mech.
81
(
3
),
197
213
(
1999
).
27.
Friebe
,
H. W.
, “
Das stabilitätsverhalten verdünnter lösungen sehr langkettiger hochpolymerer in der couette-strömung
,”
Rheol. Acta
15
(
6
),
329
355
(
1976
).
28.
Giesekus
,
H.
, “
Zur stabilitüat von ströomungen viskoelastischer flüssigkeiten 1. Ebene und kreisförmige Couette-strömung
,”
Rheol. Acta
5
(
3
),
239
252
(
1966
).
29.
Giesekus
,
H.
, in
Progress in Heat and Mass Transfer
, edited by
W. R.
Schowalter
,
A. V.
Luikov
,
N. H.
Afgan
, and
W. J.
Mikowyez
(
Pergamon
,
New York
,
1972
),
Vol. 5
.
30.
Ginn
,
R. F.
, and
M. M.
Denn
, “
Rotational stability in viscoelastic liquids: Theory
,”
AIChE J.
15
(
3
),
450
454
(
1969
).
31.
Goharzadeh
,
A.
, and
I.
Mutabazi
, “
Experimental characterization of intermittency regimes in the Couette-Taylor system
,”
Eur. Phys. J. B
19
,
157
162
(
2001
).
32.
Gorman
,
M.
, and
H. L.
Swinney
, “
Spatial and temporal characteristics of modulated waves in the circular Couette system
,”
J. Fluid Mech.
117
,
123
142
(
1982
).
33.
Graham
,
M. D.
Drag reduction in turbulent flow of polymer solutions
,” in
Rheology Reviews
, edited by
D. M.
Binding
and
K.
Walters
(
British Society of Rheology
,
Aberystwyth, Wales
,
2004
), pp.
143
170
.
34.
Groisman
,
A.
, and
V.
Steinberg
, “
Couette-Taylor flow in a dilute polymer solution
,”
Phys. Rev. Lett.
77
(
8
),
1480
1483
(
1996
).
35.
Groisman
,
A.
, and
V.
Steinberg
, “
Solitary vortex pairs in viscoelastic Couette flow
,”
Phys. Rev. Lett.
78
(
8
),
1460
1463
(
1997
).
36.
Groisman
,
A.
, and
V.
Steinberg
, “
Mechanism of elastic instability in Couette flow of polymer solutions: Experiment
,”
Phys. Fluids
10
(
10
),
2451
2463
(
1998
).
37.
Haas
,
R.
, and
K.
Bühler
, “
Einfluß nichtnewtonscher stoffeigenschaften auf die Taylor-wirbelströmung
,”
Rheol. Acta
28
(
5
),
402
413
(
1989
).
38.
Kameneva
,
M. V.
,
Z. J.
Wu
,
A.
Uraysh
,
B.
Repko
,
K. N.
Litwak
,
T. R.
Billiar
,
M. P.
Fink
,
R. L.
Simmons
,
B. P.
Griffith
, and
H. S.
Borovetz
, “
Blood soluble drag-reducing polymers prevent lethality from hemorrhagic shock in acute animal experiments
,”
Biorheology
,
41
,
53
64
(
2004
).
39.
Karlsson
,
S. K. F.
,
M.
Sokolov
, and
R.I.
Tanner
, “
Drag Reduction
,” in
American Institute of Chemical Engineers Symposium Series
, edited by
J. G.
Savins
and
P. S.
Virk
(
American Institute of Chemical Engineers
,
New York
,
1971
),
Vol. 67
, pp.
11
20
.
40.
Koschmieder
,
E. L.
,
Bénard Cells and Taylor Vortices
(
Cambridge University Press
,
Cambridge
,
1993
).
41.
Kulicke
,
W. M.
,
M.
Kotter
, and
H.
Grager
, “
Drag reduction phenomenon with special emphasis on homogeneous polymer-solutions
,”
Adv. Polym. Sci.
89
,
1
69
(
1989
).
42.
Larson
,
R. G.
, “
Taylor-Couette stability analysis for a Doi-Edwards fluid
,”
Rheol. Acta
28
,
504
510
(
1989
).
43.
Larson
,
R. G.
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
263
(
1992
).
44.
Larson
,
R. G.
,
S. J.
Muller
, and
E. S. G.
Shaqfeh
, “
The effect of fluid rheology on the elastic Taylor-Couette instability
,”
J. Non-Newtonian Fluid Mech.
51
,
195
225
(
1994
).
45.
Larson
,
R. G.
,
E. S. G.
Shaqfeh
, and
S. J.
Muller
, “
A purely elastic instability in Taylor-Couette flow
,”
J. Fluid Mech.
218
,
573
600
(
1990
).
46.
Li
,
W.
, and
M. D.
Graham
, “
Polymer induced drag reduction in exact coherent structures of plane Poiseuille flow
,”
Phys. Fluids
19
,
083101
(
2007
).
47.
Lockett
,
F. J.
, and
R. S.
Rivlin
, “
Stability in Couette flow of a viscoelastic fluid. 1
,”
J. Mec.
7
(
4
),
475
498
(
1968
).
48.
Macias
,
C. A.
,
M. V.
Kameneva
,
J. J.
Tenhunen
,
J.-C.
Puyana
, and
M. P.
Fink
, “
Survival in a rat model of lethal hemorrhagic shock is prolonged following resuscitation with a small volume of a solution containing a drag-reducing polymer derived from aloe vera
,”
Shock
22
(
2
),
151
156
(
2004
).
49.
Merrill
,
E. W.
, and
A. F.
Horn
, “
Scission of macromolecules in dilute-solution- extensional and turbulent flows
,”
Polym. Commun.
25
(
5
),
144
146
(
1984
).
50.
Merrill
,
E. W.
,
K. A.
Smith
,
H.
Shin
, and
H. S.
Mickley
, “
Study of turbulent flows of dilute polymer solutions in a Couette viscometer
,”
Trans. Soc. Rheol.
10
,
335
351
(
1966
).
51.
Miller
,
C.
, and
J. D.
Goddard
,
“Polymer fluid mechanics,” in Advances in Applied Mechanics, C.-S. Yih, Ed. (Academic Press, Inc., New York, 1979)
Vol. 19, pp.
143
219
.
52.
Muller
,
S. J.
, “
Elastically-influenced instabilities in Taylor-Couette and other flows with curved streamlines: A review
,”
Korea-Aust. Rheol. J.
20
(
3
),
117
125
(
2008
).
53.
Muller
,
S. J.
,
R. G.
Larson
, and
E. S. G.
Shaqfeh
, “
A purely elastic transition in Taylor-Couette flow
,”
Rheol. Acta
28
,
499
503
(
1989
).
54.
Paterson
,
R. W.
, and
F. H.
Abernathy
, “
Turbulent flow drag reduction and degradation with dilute polymer solutions
,”
J. Fluid Mech.
43
(
4
),
689
710
(
1970
).
55.
Renardy
,
M.
, “
A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets
,”
J. Non-Newtonian Fluid Mech.
59
,
267
282
(
1995
).
56.
Rodd
,
L. E.
,
J. J.
Cooper-White
,
D. V.
Boger
, and
G. H.
McKinley
, “
Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated contraction geometries
,”
J. Non-Newtonian Fluid Mech.
143
,
170
191
(
2007
).
57.
Rodd
,
L. E.
,
T. P.
Scott
,
J. J.
Cooper-White
, and
G. H.
McKinley
, “
Capillary Break-up rheometry of low-viscosity elastic fluids
,”
Appl. Rheol.
15
(
1
),
12
27
(
2005
).
58.
Roy
,
A.
,
A.
Morozov
,
W.
van Saarloos
, and
R. G.
Larson
, “
Mechanism of polymer drag reduction using a low-dimensional model
,”
Phys. Rev. Lett.
97
,
234501
(
2006
).
59.
Rubin
,
H.
, and
C.
Elata
, “
Stability of Couette flow of dilute polymer solutions
,”
Phys. Fluids
9
(
10
),
1929
1933
(
1966
).
60.
Sellin
,
R. H. J.
,
J. W.
Hoyt
,
J.
Pollert
, and
O.
Scrivener
, “
The effect of drag reducing additives on fluid-flows and their industrial applications 2. Present applications and future proposals
,”
J. Hydraul. Res.
20
,
235
292
(
1982
).
61.
Seyer
,
F. A.
, and
A. B.
Metzner
, “
Turbulence phenomena in drag reducing systems
,”
AIChE J.
15
(
3
),
426
434
(
1969
).
62.
Shaqfeh
,
E. S. G.
,
S. J.
Muller
, and
R. G.
Larson
, “
The effects of gap width and dilute solution properties on the viscoelastic Taylor-Couette instability
,”
J. Fluid Mech.
235
,
285
317
(
1992
).
63.
Shetty
,
A. M.
, and
M. J.
Solomon
, “
Aggregation in dilute solutions of high molar mass poly(ethylene) oxide and its effect on polymer turbulent drag reduction
,”
Polymer
50
(
1
),
261
270
(
2009
).
64.
Smith
M. M.
, and
R. S.
Rivlin
, “
Stability in Couette flow of a viscoelastic fluid. 2
,”
J. Mec.
11
(
1
),
69
94
(
1972
).
65.
Stone
,
P. A.
,
A.
Roy
,
R. G.
Larson
,
F.
Waleffe
, and
M. D.
Graham
, “
Polymer drag reduction in exact coherent structures of plane shear flow
,”
Phys. Fluids
16
(
9
),
3470
3482
(
2004
).
66.
Sun
Z. S.
, and
M. M.
Denn
, “
Stability of rotational Couette flow of polymer-solutions
,”
AIChE J.
18
(
5
),
1010
1015
(
1972
).
67.
Sung
,
J. H.
,
S. T.
Lim
,
C. A.
Kim
,
H. J.
Chung
, and
H. J.
Choi
, “
Mechanical degradation kinetics of poly(ethylene oxide) in a turbulent flow
,”
Korea-Aust. Rheol. J.
16
(
2
),
57
62
(
2004
).
68.
Sureshkumar
,
R.
,
A. N.
Beris
, and
R. A.
Handler
, “
Direct numerical simulation of the turbulent channel flow of a polymer solution
,”
Phys. Fluids
9
(
3
),
743
755
(
1997
).
69.
Tanner
,
R. I.
,
Engineering Rheology
(
Oxford University Press
,
Oxford
,
1985
).
70.
Thomas
,
D. G.
,
B.
Khomami
, and
R.
Sureshkumar
, “
Nonlinear dynamics of viscoelastic Taylor-Couette flow: Effect of elasticity on pattern selection, molecular conformation and drag
,”
J. Fluid Mech.
620
,
353
382
(
2009
).
71.
Toms
,
B. A.
, “
Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers
,” in
Proceedings of the First International Congress on Rheology II
(North Holland Publishing, Amsterdam, 1948), pp. 135–141.
72.
Vanapalli
,
S. A.
, “
Polymer chain scission in extensional and turbulent flows and implications for friction drag technologies
,” Ph.D. Dissertation,
University of Michigan
(
2006
).
73.
Virk
,
P. S.
, “
Drag reduction fundamentals
,”
AIChE J.
21
,
625
656
(
1975
).
74.
Virk
,
P. S.
,
E. W.
Merrill
,
H. S.
Mickley
,
K. A.
Smith
, and
E. L.
Mollo-Christensen
, “
Toms phenomenon—Turbulent pipe flow of dilute polymer solutions
,”
J. Fluid Mech.
30
,
305
328
(
1967
).
75.
Wagner
,
C.
,
Y.
Amarouchene
,
P.
Doyle
, and
D.
Bonn
, “
Turbulent-drag reduction of polyelectrolyte solutions: Relation with the elongational viscosity
,”
Europhys. Lett.
64
(
6
),
823
829
(
2003
).
76.
Watanabe
,
K.
,
S.
Sumio
, and
S.
Ogata
, “
Formation of Taylor vortex flow of polymer solutions
,”
ASME Trans. J. Fluids Eng.
128
(
1
),
95
100
(
2006
).
77.
White
,
C. M.
, and
M. G.
Mungal
, “
Mechanics and prediction of turbulent drag reduction with polymer additives
,”
Annu. Rev. Fluid Mech.
40
,
235
256
(
2008
).
78.
White
,
J.
, “
Experimental investigation of instabilities in Newtonian and viscoelastic Taylor-Couette flows
,” Ph.D. thesis,
University of California
, Berkeley (
2002
).
79.
White
,
J. M.
, and
S. J.
Muller
, “
Viscous heating and the stability of Newtonian and viscoelastic Taylor-Couette flows
,”
Phys. Rev. Lett.
84
(
22
),
5130
5133
(
2000
).
80.
White
,
J. M.
, and
S. J.
Muller
, “
The role of thermal sensitivity of fluid properties, centrifugal destabilization, and nonlinear disturbances on the viscous heating instability in Newtonian Taylor-Couette flow
,”
Phys. Fluids
14
(
11
),
3880
3890
(
2002a
).
81.
White
,
J. M.
, and
S. J.
Muller
, “
Experimental studies on the stability of Newtonian Taylor-Couette flow in the presence of viscous heating
,”
J. Fluid Mech.
462
,
133
159
(
2002b
).
82.
White
,
J. M.
, and
S. J.
Muller
, “
Experimental studies on the effect of viscous heating on the hydrodynamic stability of viscoelastic Taylor-Couette flow
,”
J. Rheol.
47
(
6
)
1467
1492
(
2003
).
83.
Yarin
,
A. L.
,
Free Liquid Jets and Films: Hydrodynamics and Rheology, Interaction of Mechanics and Mathematics Series
(
Longman/Wiley
,
New York
,
1993
).
84.
Yi
,
M. K.
, and
C.
Kim
, “
Experimental studies on the Taylor instability of dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
72
(
2-3
),
113
139
(
1997
).
85.
Zielinska
,
B. J. A.
, and
Y.
Demay
, “
Couette-Taylor instability in viscoelastic fluids
,”
Phys. Rev. A
38
(
2
),
897
903
(
1988
).
You do not currently have access to this content.