Spatially inhomogeneous shear flow occurs in entangled polymer solutions, both as steady state shear banding and transiently after a large step strain or during startup to a steady uniform shear rate. Theoretically, steady state shear banding is a hallmark of models with a nonmonotonic constitutive relation between total shear stress and applied shear rate, but transient banding is sometimes seen in fluids that do not shear band at steady state. We model this behavior using the diffusive Rolie-Poly model in a Newtonian solvent, whose steady state constitutive behavior can be monotonic or nonmonotonic depending on the degree of convective constraint release. We study monotonic steady state constitutive behavior. Linear stability analysis of the startup to a sufficiently high shear rate shows that spatial fluctuations are unstable at early times. There is a strong correlation between this instability and the negative slope of the (time dependent) constitutive curve. If the time integral of the most unstable eigenvalue is sufficiently large, then the system exhibits transient shear bands that later vanish in steady state. We show how perturbations, due to fluctuations or the inhomogeneous stresses, can trigger this instability. This transient behavior is similar to recent observations in entangled polymer solutions.

1.
Adams
,
J. M.
,
S. M.
Fielding
, and
P. D.
Olmsted
, “
The interplay between boundary conditions and flow geometries in shear banding: Hysteresis, band configurations, and surface transitions
,”
J. Non-Newtonian Fluid Mech.
151
,
101
118
(
2008
).
2.
Adams
,
J. M.
, and
P. D.
Olmsted
, “
Adams and Olmsted reply
,”
Phys. Rev. Lett.
103
,
067801
(
2009a
).
3.
Adams
,
J. M.
, and
P. D.
Olmsted
, “
Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions
,”
Phys. Rev. Lett.
102
,
219802
(
2009b
).
4.
Berret
,
J.-F.
, “
Rheology of wormlike micelles: equilibrium properties and shear banding transition
,” in
Molecular Gels
, edited by
R. G.
Weiss
and
P.
Terech
(
Springer
,
Dordrecht
,
2005
), pp.
235
275
.
5.
Black
,
W. B.
, and
M. D.
Graham
, “
Wall-slip and polymer-melt flow instability
,”
Phys. Rev. Lett.
77
,
956
959
(
1996
).
6.
Boukany
,
P. E.
,
Y. T.
Hu
, and
Wang
,
S.-Q.
, “
Observations of wall slip and shear banding in entangled DNA solutions
,”
Macromolecules
41
,
2644
2650
(
2008
).
7.
Boukany
,
P. E.
,
P.
Tapadia
, and
S. Q.
Wang
, “
Interfacial stick-slip transition in simple shear of entangled melts
,”
J. Rheol.
50
,
641
654
(
2006
).
8.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
A correlation between velocity profile and molecular weight distribution in sheared entangled polymer solutions
,”
J. Rheol.
51
,
217
233
(
2007
).
9.
Boukany
,
P. E.
, and
Wang
,
S.-Q.
, “
Exploring the transition from wall slip to bulk shearing banding in well-entangled DNA solutions
,”
Soft Matter
5
,
780
789
(
2009a
).
10.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Shear banding or not in entangled DNA solutions depending on the level of entanglement
,”
J. Rheol.
53
,
73
83
(
2009b
).
11.
Boukany
,
P. E.
,
S.-Q.
Wang
, and
X.
Wang
, “
Step shear of entangled linear polymer melts: New experimental evidence for elastic yielding
,”
Macromolecules
42
,
6261
6269
(
2009
).
12.
Cates
,
M. E.
, “
Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers)
,”
J. Phys. Chem.
94
,
371
375
(
1990
).
13.
Cates
,
M. E.
, and
S. M.
Fielding
, “
Rheology of giant micelles
,”
Adv. Phys.
55
,
799
879
(
2006
).
14.
Crawley
,
R. L.
, and
W. W.
Graessley
, “
Geometry effects on stress transient data obtained by cone and plate flow
,”
J. Rheol.
21
,
19
49
(
1977
).
15.
Denn
,
M. M.
, “
Extrusion instabilities and wall slip
,”
Annu. Rev. Fluid Mech.
33
,
265
287
(
2001
).
16.
Divoux
,
T.
,
D.
Tamarii
,
C.
Barentin
, and
S.
Manneville
, “
Transient shear banding in a simple yield stress fluid
,”
Phys. Rev. Lett.
104
,
208301
(
2010
).
17.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1989
).
18.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. Part 4.-Rheological properties
,”
J. Chem. Soc., Faraday Trans. 2
75
,
38
54
(
1979
).
19.
Fielding
,
S. M.
, and
P. D.
Olmsted
, “
Kinetics of the shear banding instability in startup flows
,”
Phys. Rev. E
68
,
036313
(
2003
).
20.
Fukuda
,
M.
,
K.
Osaki
, and
M.
Kurata
, “
Nonlinear viscoelasticity of polystyrene solutions. I. Strain-dependent relaxation modulus
,”
J. Polym. Sci., Polym. Phys. Ed.
13
,
1563
1576
(
1975
).
21.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
22.
Graham
,
R. S.
, and
T. C. B.
McLeish
, “
Emerging applications for models of molecular rheology
,”
J. Non-Newtonian Fluid Mech.
150
,
11
18
(
2007
).
23.
Greco
,
F.
, and
R. C.
Ball
, “
Shear-band formation in a non-Newtonian fluid model with a constitutive instability
,”
J. Non-Newtonian Fluid Mech.
69
,
195
206
(
1997
).
24.
Hayes
,
K. A.
,
M. R.
Buckley
,
H.
Qi
,
I.
Cohen
, and
L. A.
Archer
, “
Constitutive curve and velocity profile in entangled polymers during start-up of steady shear flow
,”
Macromolecules
43
,
4412
4417
(
2010
).
25.
Hu
,
Y. T.
,
C.
Palla
, and
A.
Lips
, “
Comparison between shear banding and shear thinning in entangled micellar solutions
,”
J. Rheol.
52
,
379
400
(
2008a
).
26.
Hu
,
Y. T.
,
C.
Palla
, and
A.
Lips
, “
Role of electrostatic interactions in shear banding of entangled DNA solutions
,”
Macromolecules
41
,
6618
6620
(
2008b
).
27.
Hu
,
Y. T.
,
L.
Wilen
,
A.
Philips
, and
A.
Lips
, “
Is the constitutive relation for entangled polymers monotonic?
,”
J. Rheol.
51
,
275
295
(
2007
).
28.
Islam
,
M. T.
, and
L. A.
Archer
, “
Nonlinear rheology of highly entangled polymer solutions in start-up and steady shear flow
,”
J. Polym. Sci., Part B: Polym. Phys.
39
,
2275
2289
(
2001
).
29.
Jagla
,
E. A.
, “
Towards a modeling of the time dependence of contact area between solid bodies
,”
J. Stat. Mech.: Theory Exp.
2010
,
P06006
(
2010
).
30.
Kolkka
,
R. W.
,
D. S.
Malkus
,
M. G.
Hansen
, and
G. R.
Ierley
, “
Spurt phenomena of the Johnson-Segalman fluid and related models
,”
J. Non-Newtonian Fluid Mech.
29
,
303
335
(
1988
).
31.
Larson
,
R. G.
, “
A constitutive equation for polymer melts based on partially extending strand convection
,”
J. Rheol.
28
,
545
571
(
1984
).
32.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
).
33.
Larson
,
R. G.
,
T.
Sridhar
,
L. G.
Leal
,
G. H.
McKinley
,
A. E.
Likhtman
, and
T. C. B.
McLeish
, “
Definitions of entanglement spacing and time constants in the tube model
,”
J. Rheol.
47
,
809
818
(
2003
).
34.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation
,”
J. Non-Newtonian Fluid Mech.
114
,
1
12
(
2003
).
35.
Likhtman
,
A. E.
,
S. T.
Milner
, and
T. C. B.
McLeish
, “
Microscopic theory for the fast flow of polymer melts
,”
Phys. Rev. Lett.
85
,
4550
4553
(
2000
).
36.
Lu
,
C.-Y. D.
,
P. D.
Olmsted
, and
R. C.
Ball
, “
Effects of nonlocal stress on the determination of shear banding flow
,”
Phys. Rev. Lett.
84
,
642
645
(
2000
).
37.
Manning
,
M. L.
,
E. G.
Daub
,
J. S.
Langer
, and
J. M.
Carlson
, “
Rate-dependent shear bands in a shear-transformation-zone model of amorphous solids
,”
Phys. Rev. E
79
,
016110
(
2009
).
38.
Manning
,
M. L.
,
J. S.
Langer
, and
J. M.
Carlson
, “
Strain localization in a shear transformation zone model for amorphous solids
,”
Phys. Rev. E
76
,
056106
(
2007
).
39.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with Cox-Merz rule
,”
J. Non-Newtonian Fluid Mech.
62
,
279
289
(
1996
).
40.
Marrucci
,
G.
, and
N.
Grizzuti
, “
The free energy function of the Doi-Edwards theory: Analysis of the instabilities in stress relaxation
,”
J. Rheol.
27
,
433
450
(
1983
).
41.
McLeish
,
T. C. B.
, and
R. C.
Ball
, “
A molecular approach to the spurt effect in polymer melt flow
,”
J. Polym. Sci., Part B: Polym. Phys.
24
,
1735
1745
(
1986
).
42.
Mead
,
D. W.
,
R. G.
Larson
, and
M.
Doi
, “
A molecular theory for fast flows of entangled polymers
,”
Macromolecules
31
,
7895
7914
(
1998
).
43.
Menezes
,
E. V.
, and
W. W.
Graessley
, “
Nonlinear rheological behavior of polymer systems for several shear-flow histories
,”
J. Polym. Sci., Polym. Phys. Ed.
20
,
1817
1833
(
1982
).
44.
Milner
,
S. T.
,
McLeish
,
T. C. B.
, and
A. E.
Likhtman
, “
Microscopic theory of convective constraint release
,”
J. Rheol.
45
,
539
563
(
2001
).
45.
Moorcroft
,
R. L.
,
M. E.
Cates
, and
S. M.
Fielding
, “
Erratum: Age-dependent transient shear banding in soft glasses
,”
Phys. Rev. Lett.
106
,
055502
(
2011
).
46.
Morrison
,
F. A.
, and
R. G.
Larson
, “
A study of shear-stress relaxation anomalies in binary mixtures of monodisperse polystyrenes
,”
J. Polym. Sci., Part B: Polym. Phys.
30
,
943
950
(
1992
).
47.
Olmsted
,
P. D.
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
,
283
300
(
2008
).
48.
Olmsted
,
P. D.
,
O.
Radulescu
, and
C.-Y. D.
Lu
, “
Johnson-Segalman model with a diffusion term in cylindrical Couette flow
,”
J. Rheol.
44
,
257
275
(
2000
).
49.
Osaki
,
K.
, “
On the damping function of shear relaxation modulus for entangled polymers
,”
Rheol. Acta
32
,
429
437
(
1993
).
50.
Osaki
,
K.
, and
M.
Kurata
, “
Experimental appraisal of the Doi-Edwards theory for polymer rheology based on the data for polystyrene solutions
,”
Macromolecules
13
,
671
676
(
1980
).
51.
Ravindranath
,
S.
, and
S.-Q.
Wang
, “
What are the origins of stress relaxation behaviors in step shear of entangled polymer solutions?
,”
Macromolecules
40
,
8031
8029
(
2007
).
52.
Ravindranath
,
S.
, and
S.-Q.
Wang
, “
Large amplitude oscillatory shear behavior of entangled polymer solutions: Particle tracking velocimetric investigation
,”
J. Rheol.
52
,
341
358
(
2008
).
53.
Ravindranath
,
S.
,
S.-Q.
Wang
,
M.
Olechnowicz
, and
R. P.
Quirk
, “
Banding in simple steady shear of entangled polymer solutions
,”
Macromolecules
41
,
2663
2670
(
2008
).
54.
Rehage
,
H.
, and
H.
Hoffmann
, “
Viscoelastic surfactant solutions: Model systems for rheological research
,”
Mol. Phys.
74
,
933
973
(
1991
).
55.
Rossi
,
L. F.
,
G.
McKinley
, and
L. P.
Cook
, “
Slippage and migration in Taylor-Couette flow of a model for dilute wormlike micellar solutions
,”
J. Non-Newtonian Fluid Mech.
136
,
79
92
(
2006
).
56.
Spenley
,
N. A.
,
M. E.
Cates
, and
T. C. B.
McLeish
, “
Nonlinear rheology of wormlike micelles
,”
Phys. Rev. Lett.
71
,
939
942
(
1993
).
57.
Sui
,
C.
, and
G. B.
McKenna
, “
Instability of entangled polymers in cone and plate rheometry
,”
Rheol. Acta
46
,
877
888
(
2007
).
58.
Tapadia
,
P.
,
S.
Ravindranath
, and
S.-Q.
Wang
, “
Banding in entangled polymer fluids under oscillatory shearing
,”
Phys. Rev. Lett.
96
,
196001
(
2006
).
59.
Tapadia
,
P.
, and
S.-Q.
Wang
, “
Yieldlike constitutive transition in shear flow of entangled polymeric fluids
,”
Phys. Rev. Lett.
91
,
198301
(
2003
).
60.
Tapadia
,
P.
, and
S.-Q.
Wang
, “
Nonlinear flow behavior of entangled polymer solutions: Yieldlike entanglement-disentanglement transition
,”
Macromolecules
37
,
9083
9095
(
2004
).
61.
Tapadia
,
P.
, and
S.-Q.
Wang
, “
Direct visualization of continuous simple shear in non-Newtonian polymeric fluids
,”
Phys. Rev. Lett.
96
,
016001
(
2006
).
62.
Venerus
,
D. C.
, “
A critical evaluation of step strain flows of entangled linear polymer liquids
,”
J. Rheol.
49
,
277
295
(
2005
).
63.
Venerus
,
D. C.
, and
R.
Nair
, “
Stress relaxation dynamics of an entangled polystyrene solution following step strain flow
,”
J. Rheol.
50
,
59
75
(
2006
).
64.
Vinogradov
,
G. V.
, “
Critical regimes of deformation of liquid polymeric systems
,”
Rheol. Acta
12
,
357
373
(
1973
).
65.
Vrentas
,
C. M.
, and
W. W.
Graessley
, “
Study of shear stress relaxation in well-characterized polymer liquids
,”
J. Rheol.
26
,
359
371
(
1982
).
66.
Wang
,
S. Q.
, “
Molecular transitions and dynamics at polymer/wall interfaces: Origins of flow instabilities and wall slip
,” in
Polymers in Confined Environments, Adv. Poly. Sci.
(
Springer
,
Berlin
,
1999
), Vol.
138
, pp.
227
275
.
67.
Wang
S.-Q.
, “
Comment on nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions
,”
Phys. Rev. Lett.
103
,
219801
(
2009
).
68.
Wang
S-.Q.
,
S.
Ravindranath
,
P.
Boukany
,
M.
Olechnowicz
,
R.
Quirk
,
A.
Halasa
, and
J.
Mays
, “
Nonquiescent relaxation in entangled polymer liquids after step shear
,”
Phys. Rev. Lett.
97
,
187801
(
2006
).
69.
Wang
S-.Q.
,
S.
Ravindranath
,
Y.
Wang
, and
P.
Boukany
, “
New theoretical consideration in polymer rheology: Elastic breakdown of chain entanglement network
,”
J. Chem. Phys.
127
,
064903
(
2007
).
70.
Zhou
,
L.
,
L. P.
Cook
, and
McKinley
,
G. H
, “
Probing shear-banding transitions of the VCM model for entangled wormlike micellar solutions using large amplitude oscillatory shear (LAOS) deformations
,”
J. Non-Newtonian Fluid Mech.
165
,
1462
1472
(
2010
).
71.
Zhou
,
L.
,
P. A.
Vasquez
,
L. P.
Cook
, and
G. A.
McKinley
, “
Modeling the inhomogeneous response and formation of shear bands in steady and transient flows of entangled liquids
,”
J. Rheol.
52
,
591
623
(
2008
).
You do not currently have access to this content.