Although many constitutive models for wormlike micellar solutions have been proposed, few quantitative comparisons have been made with detailed rheological measurements. The majority of comparative studies focus on the linear viscoelastic properties of micellar solutions, which are well described by monoexponential Maxwell-like behavior. In the present work we compare the predictions of a prototypical two-species reptation-reaction model [developed in Part 1, Vasquez et al., “A network scission model for wormlike micellar solutions: I. Model formulation and viscometric flow predictions,” J. Non-Newtonian Fluid Mech.144(2–3), 122139 (2007)] with rheological measurements performed using a concentrated cetyl pyridinium chloride/sodium salicylate (CPyCl/NaSal) solution in a range of steady and transient shear flows. The model captures the continuous rupture and reformation of the long entangled chains that form a physically entangled viscoelastic network and the enhanced breakage rates that occur during imposed shearing deformations. In homogeneous shearing flows, the model describes numerous qualitative features of the linear and nonlinear rheologies, including a strongly strain-dependent damping function during large strains, agreement with the Lodge–Meissner rule at moderately large strains, large rate-dependent first normal stress coefficients in steady shear flow, and pronounced stress overshoots during start-up of steady shear. The present model cannot predict the second normal stress difference observed experimentally or the persistent agreement with the Lodge–Meissner rule observed experimentally at very large strains. Homogeneous flow calculations with this simplified two-species model cannot capture quantitatively the full range of transient dynamics observed experimentally. More complex time-dependent test protocols, including step-jumps (up and down) in deformation rate and applied stress, are used to reveal the slow temporal dynamics associated with evolution of the shear-banding plateau. Such experiments help to provide insight into additional features (such as diffusion coefficients for stress-microstructure coupling) that are required for fully quantitative rheological equations of state describing these concentrated wormlike micellar solutions.

1.
Anderson
,
V. J.
,
J. R. A.
Pearson
, and
E. S.
Boek
,
Rheology Reviews
(
British Society of Rheology
,
Aberystwyth
,
2006a
), pp.
217
253
.
2.
Anderson
,
V. J.
,
J. R. A.
Pearson
, and
J. D.
Sherwood
, “
Oscillation superimposed on steady shearing: Measurements and predictions for wormlike micellar solutions
,”
J. Rheol.
50
(
5
),
771
796
(
2006b
).
3.
Baek
,
S. G.
, and
J. J.
Magda
, “
Monolithic rheometer plate fabricated using silicon micromachining technology and containing miniature pressure sensors for N1 and N2 measurements
,”
J. Rheol.
47
(
5
),
1249
1260
(
2003
).
4.
Bautista
,
F.
,
J. M.
de Santos
,
J. E.
Puig
, and
O.
Manero
, “
Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model
,”
J. Non-Newtonian Fluid Mech.
80
,
93
113
(
1999
).
5.
Berret
,
J. -F.
,
J.
Appell
, and
G.
Porte
, “
Linear rheology of entangled wormlike micelles
,”
Langmuir
9
,
2851
2854
(
1993
).
6.
Berret
,
J. -F.
,
G.
Porte
, and
J. -P.
Decruppe
, “
Inhomogeneous shear flows of wormlike micelles: A master dynamic phase diagram
,”
Phys. Rev. E
55
(
2
),
1668
1676
(
1997
).
7.
Berret
,
J. -F.
,
D. C.
Roux
, and
G.
Porte
, “
Isotropic-to-nematic transition in wormlike micelles under shear
,”
J. Phys. II
4
,
1261
1279
(
1994
).
8.
Bhardwaj
,
A.
,
E.
Miller
, and
J. P.
Rothstein
, “
Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic wormlike micelle solutions
,”
J. Rheol.
51
(
4
),
693
719
(
2007
).
9.
Bhave
,
A. V.
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Kinetic-theory and rheology of dilute, nonhomogeneous polymer-solutions
,”
J. Chem. Phys.
95
(
4
),
2988
3000
(
1991
).
10.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol.
1
.
11.
Boltenhagen
,
P.
,
Y.
Hu
,
E. F.
Matthys
, and
D. J.
Pine
, “
Observation of bulk phase separation and coexistence in a sheared micellar solution
,”
Phys. Rev. Lett.
79
(
12
), (
1997
).
12.
Britton
,
M. M.
, and
P. T.
Callaghan
, “
Two-phase shear band structures at uniform stress
,”
Phys. Rev. Lett.
78
(
26
),
4930
4933
(
1997
).
13.
Britton
,
M. M.
, and
P. T.
Callaghan
, “
Shear banding instability in wormlike micellar solutions
,”
Eur. Phys. J. B
7
,
237
249
(
1999
).
14.
Brown
,
E. F.
,
W. R.
Burghardt
, and
D. C.
Venerus
, “
Tests of the Lodge-Meissner relation in anomalous nonlinear step strain of an entangled wormlike micelle solution
,”
Langmuir
13
,
3902
3904
(
1997
).
15.
Cates
,
M. E.
, “
Reptation of living polymers: Dynamics of entangled polymers in the presence of reversible chain-scission reactions
,”
Macromolecules
20
,
2289
2296
(
1987
).
16.
Cates
,
M. E.
, “
Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers)
,”
J. Chem. Phys.
94
(
1
),
371
375
(
1990
).
17.
Cates
,
M. E.
, and
S. J.
Candau
, “
Statics and dynamics of worm-like surfactant micelles
,”
J. Phys.: Condens. Matter
2
,
6869
6892
(
1990
).
18.
Cates
,
M. E.
, and
S. M.
Fielding
, “
Rheology of giant micelles
,”
Adv. Phys.
55
(
7
),
799
879
(
2006
).
19.
Cook
,
L. P.
, and
L. F.
Rossi
, “
Slippage and migration in models of dilute wormlike micellar solutions and polymeric fluids
,”
J. Non-Newtonian Fluid Mech.
116
(
2–3
),
347
369
(
2004
).
20.
Davies
,
C. J.
,
A. J.
Sederman
,
C. J.
Pipe
,
G. H.
McKinley
,
L. F.
Gladden
, and
M. L.
Johns
, “
Rapid measurement of transient velocity evolution using Gervais
,”
J. Magn. Reson.
202
(
1
),
93
101
(
2010
).
21.
de Gennes
,
P. G.
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
(
2
),
572
579
(
1971
).
22.
Decruppe
,
J. P.
,
S.
Lerouge
, and
J. F.
Berret
, “
Insight in shear banding under transient flow
,”
Phys. Rev. E
63
,
022501
(
2001
).
23.
Dhont
,
J. K. G.
, and
W. J.
Briels
, “
Gradient and vorticity banding
,”
Rheol. Acta
47
(
3
),
257
281
(
2008
).
24.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
New York
,
1986
).
25.
El-Kareh
,
A. W.
and
L. G.
Leal
, “
Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion
,”
J. Non-Newtonian Fluid Mech.
33
(
3
),
257
287
(
1989
).
26.
Fielding
,
S. M.
, and
P. D.
Olmsted
, “
Nonlinear dynamics of an interface between shear bands
,”
Phys. Rev. Lett.
96
,
104502
(
2006
).
27.
Fischer
,
P.
, and
H.
Rehage
, “
Quantitative description of the non-linear flow-properties of viscoelastic surfactant solutions
,”
Prog. Colloid Polym. Sci.
98
,
94
98
(
1995
).
28.
Fischer
,
P.
,
E. K.
Wheeler
, and
G. G.
Fuller
, “
Shear-banding structure orientated in the vorticity direction observed for equimolar micellar solution
,”
Rheol. Acta
41
(
1–2
),
35
44
(
2002
).
29.
Fredrickson
,
A. G.
, “
A model for the thixotropy of suspensions
,”
AIChE J.
16
(
3
),
436
441
(
1970
).
30.
Ganapathy
,
R.
, and
A. K.
Sood
, “
Intermittency route to rheochaos in wormlike micelles with flow-concentration coupling
,”
Phys. Rev. Lett.
96
,
108301
(
2006
).
31.
Ganapathy
,
R.
, and
A. K.
Sood
, “
Nonlinear flow of wormlike micellar gels: Regular and chaotic time-dependence of stress, normal force and nematic ordering
,”
J. Non-Newtonian Fluid Mech.
149
(
1–3
),
78
86
(
2008
).
32.
Grand
,
C.
,
J.
Arrault
, and
M. E.
Cates
, “
Slow transients and metastability in wormlike micelle rheology
,”
J. Phys. II
7
,
1071
1086
(
1997
).
33.
Granek
,
R.
, and
M. E.
Cates
, “
Stress relaxation in living polymers: Results from a Poisson renewal model
,”
J. Chem. Phys.
96
(
6
),
4758
4767
(
1992
).
34.
Helgeson
,
M. E.
,
P. A.
Vasquez
,
E. W.
Kaler
, and
N. J.
Wagner
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
,
727
756
(
2009
).
35.
Hu
,
Y. T.
, and
A.
Lips
, “
Kinetics and mechanism of shear banding in entangled micellar solutions
,”
J. Rheol.
49
(
5
),
1001
1027
(
2005
).
36.
Johnson
,
M.
, and
D.
Segalman
, “
A model for viscoelastic fluid behavior which allows non-affine deformation
,”
J. Non-Newtonian Fluid Mech.
2
,
255
270
(
1977
).
37.
Kern
,
F.
,
F.
Lequeux
,
R.
Zana
, and
S. J.
Candau
, “
Dynamical properties of salt-free viscoelastic micellar solutions
,”
Langmuir
10
,
1714
1723
(
1994
).
38.
Larson
,
R. G.
, “
A constitutive equation for polymer melts based on partially extending strand convection
,”
J. Rheol.
28
(
5
),
545
571
(
1984
).
39.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworths
,
London
,
1988
).
40.
Larson
,
R. G.
,
H.
Hu
,
D. E.
Smith
, and
S.
Chu
, “
Brownian dynamics simulations of a DNA molecule in an extensional flow field
,”
J. Rheol.
43
(
2
),
267
304
(
1999
).
41.
Lee
,
J. -Y.
,
J. J.
Magda
,
H.
Hu
, and
R. G.
Larson
, “
Cone angle effects, radial pressure profile, and second normal stress difference for shear-thickening wormlike micelles
,”
J. Rheol.
46
(
1
),
195
208
(
2002
).
42.
Liberatore
,
M. W.
,
F.
Nettesheim
,
N. J.
Wagner
, and
L.
Porcar
, “
Spatially resolved small-angle neutron scattering in the 1–2 plane: A study of shear-induced phase-separating wormlike micelles
,”
Phys. Rev. E
73
(
2
),
020504
(
2006
).
43.
López-González
,
M. R.
,
W. M.
Holmes
,
P. T.
Callaghan
, and
P. J.
Photinos
, “
Shear banding fluctuations and nematic order in wormlike micelles
,”
Phys. Rev. Lett.
93
,
268302
(
2004
).
44.
Lu
,
C. Y. D.
,
P. D.
Olmsted
, and
R. C.
Ball
, “
Effects of nonlocal stress on the determination of shear banding flow
,”
Phys. Rev. Lett.
84
(
4
),
642
645
(
2000
).
45.
Manero
,
O.
,
F.
Bautista
,
J. F. A.
Soltero
, and
J. E.
Puig
, “
Dynamics of worm-like micelles: The Cox–Merz rule
,”
J. Non-Newtonian Fluid Mech.
106
(
1
),
1
15
(
2002
).
46.
Manneville
,
S.
,
L.
Bécu
,
P.
Grondin
, and
A.
Colin
, “
High-frequency ultrasonic imaging: A spatio-temporal high-frequency ultrasonic imaging: A spatio-temporal approach of rheology
,”
Colloids Surf., A
270–271
,
194
204
(
2005
).
47.
Mavrantzas
,
V. G.
, and
A. N.
Beris
, “
Modeling of the rheology and flow-induced concentration changes in polymer solutions
,”
Phys. Rev. Lett.
69
(
2
),
273
276
(
1992
).
48.
Méndez-Sánchez
,
A. F.
,
M. R.
López-González
,
V. H.
Rolón-Garrido
,
J.
Pérez-González
, and
L.
de Vargas
, “
Instabilities of micellar systems under homogeneous and non-homogeneous flow conditions
,”
Rheol. Acta
42
,
56
63
(
2003
).
49.
Miller
,
E.
, and
J. P.
Rothstein
, “
Transient evolution of shear banding in wormlike micelle solutions
,”
J. Non-Newtonian Fluid Mech.
143
(
1
),
22
37
(
2007
).
50.
Nghe
,
P.
,
G.
Degre
,
P.
Tabeling
, and
A.
Ajdari
, “
High shear rheology of shear banding fluids in microchannels
,”
Appl. Phys. Lett.
93
(
20
),
204102
(
2008
).
51.
Olmsted
,
P. D.
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
(
3
),
283
300
(
2008
).
52.
Olmsted
,
P. D.
,
O.
Radulescu
, and
C. Y. D.
Lu
, “
Johnson-Segalman model with a diffusion term in cylindrical Couette flow
,”
J. Rheol.
44
(
2
),
257
275
(
2000
).
53.
Pimenta
,
P.
, and
E. E.
Pashkovski
, “
Rheology of viscoelastic mixed surfactant solutions: Effect of scission on nonlinear flow and rheochaos
,”
Langmuir
22
(
9
),
3980
3987
(
2006
).
54.
Pipe
,
C. J.
,
T. J.
Majmudar
, and
G. H.
McKinley
, “
High shear rate viscometry
,”
Rheol. Acta
47
(
5–6
),
621
642
(
2008
).
55.
Porte
,
G.
,
J. -F.
Berret
, and
J. L.
Harden
, “
Inhomogeneous flows of complex fluids: Mechanical instability versus non-equilibrium phase transition
,”
J. Phys. II
7
,
459
472
(
1997
).
56.
Rehage
,
H.
, and
H.
Hoffmann
, “
Viscoelastic surfactant solutions: Model systems for rheological research
,”
Mol. Phys.
74
(
5
),
933
973
(
1991
).
57.
Rossi
,
L. F.
,
G. H.
McKinley
, and
L. P.
Cook
, “
Slippage and migration in Taylor-Couette flow of a model for dilute wormlike micellar solutions
,”
J. Non-Newtonian Fluid Mech.
136
(
2–3
),
79
92
(
2006
).
58.
Rothstein
,
J. P.
, “
Transient extensional rheology of wormlike micelle solutions
,”
J. Rheol.
47
(
5
),
1227
1247
(
2003
).
59.
Salmon
,
J. -B.
,
Colin
,
A.
, and
Manneville
,
S.
Velocity profiles in shear-banding wormlike micelles
,”
Phys. Rev. Lett.
90
(
22
),
228303
(
2003
).
60.
Schmitt
,
V.
,
C. M.
Maques
, and
F.
Lequeux
, “
Shear induced phase separation of complex fluids: The role of flow-concentration coupling
,”
Phys. Rev. E
52
(
4
),
4009
4015
(
1995
).
61.
Schubert
,
B. A.
,
N. J.
Wagner
,
E. W.
Kaler
, and
S. R.
Raghavan
, “
Shear-induced phase separation in solutions of wormlike micelles
,”
Langmuir
20
(
9
),
3564
3573
(
2004
).
62.
Soltero
,
J. F. A.
,
F.
Bautista
,
J. E.
Puig
, and
O.
Manero
, “
Rheology of cetyltrimethylammonium p-toluenesulfate-water system. 3. Nonlinear viscoelasticity
,”
Langmuir
15
,
1604
1612
(
1999
).
63.
Spenley
,
N. A.
,
M. E.
Cates
, and
T. C. B.
McLeish
, “
Nonlinear rheology of wormlike micelles
,”
Phys. Rev. Lett.
71
(
6
),
939
942
(
1993
).
64.
Spenley
,
N. A.
,
X. F.
Yuan
, and
M. E.
Cates
, “
Nonmonotonic constitutive laws and the formation of shear-banded flows
,”
J. Phys. II
6
(
4
),
551
571
(
1996
).
65.
Turner
,
M. S.
, and
M. E.
Cates
, “
Linear viscoelasticity of living polymers: A quantitative probe of chemical relaxation times
,”
Langmuir
7
,
1590
1594
(
1991
).
66.
Vasquez
,
P. A.
,
G. H.
McKinley
, and
L. P.
Cook
, “
A network scission model for wormlike micellar solutions: I. Model formulation and viscometric flow predictions
,”
J. Non-Newtonian Fluid Mech.
144
(
2–3
),
122
139
(
2007
).
67.
Yesilata
,
B.
,
C.
Clasen
, and
G. H.
McKinley
, “
Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions
,”
J. Non-Newtonian Fluid Mech.
133
,
73
90
(
2006
).
68.
Zhou
,
L.
,
P. A.
Vasquez
,
L. P.
Cook
, and
G. H.
McKinley
, “
Modeling the inhomogeneous response and formation of shear bands in steady and transient flows of entangled liquids
,”
J. Rheol.
52
(
2
),
591
623
(
2008
).
You do not currently have access to this content.