By using a counter rotating plate-plate device, single droplets in shear flow have been microscopically studied at confinement ratios ranging from 0.1 to 0.75. The droplet-to-matrix viscosity ratio was fixed at 0.45 and 1.5. Results are presented for systems with a viscoelastic Boger fluid matrix or a viscoelastic Boger fluid droplet, at a Deborah number of 1. Although the separate effects of confinement and component viscoelasticity on droplet dynamics in shear flow are widely studied, we present the first systematic experimental results on confined droplet deformation and orientation in systems with viscoelastic components. Above a confinement ratio of 0.3, wall effects cause an increase in droplet deformation and orientation, similar to fully Newtonian systems. To describe the experimental data, the Shapira–Haber theory [Shapira, M., and S. Haber, Int. J. Multiph. Flow16, 305321 (1990)] for confined slightly deformed droplets in Newtonian-Newtonian systems is combined with phenomenological bulk models for systems containing viscoelastic components [Maffettone, P. L., and F. Greco, J. Rheol48, 83100 (2004); M. Minale, J. Non-Newtonian Fluid Mech.123, 151160 (2004)]. The experimental results are also compared to a recent model for confined droplet dynamics in fully Newtonian systems [M. Minale, Rheol. Acta47, 667675 (2008)]. For different values of the viscosity ratio, component viscoelasticity and Ca-number, good agreement was generally obtained between experimental results and predictions of one or more models. However, none of the models can accurately describe all experimental data for the whole range of parameter values.

1.
Aggarwal
,
N.
, and
K.
Sarkar
, “
Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear
,”
J. Fluid Mech.
584
,
1
21
(
2007
).
2.
Aggarwal
,
N.
, and
K.
Sarkar
, “
Effects of matrix viscoelasticity on viscous and viscoelastic drop deformation in shear flow
,”
J. Fluid Mech.
601
,
63
84
(
2008
).
3.
Cardinaels
,
R.
,
A.
Vananroye
,
K.
Verhulst
, and
P.
Moldenaers
, “
Separate and combined influence of confinement and component viscoelasticity on single droplet behavior during shear flow
,” in
Proceedings of the Polymer Processing 24th Annual Meeting
(Polymer Processing Society, Salerno,
2008a
).
4.
Cardinaels
,
R.
,
K.
Verhulst
, and
P.
Moldenaers
, “
Drop shape dynamics during shear flow in blends with a viscoelastic component: Bulk and confined conditions
,” in
Proceedings of the 9th European Symposium on Polymer Blends
(University of Palermo, Palermo,
2007
).
5.
Cardinaels
,
R.
,
K.
Verhulst
,
Y.
Renardy
, and
P.
Moldenaers
, “
Transient droplet behavior and droplet breakup during bulk and confined shear flow in blends with one viscoelastic component: experiments, modelling and simulations
,” in
Proceedings of the 15th International Congress on Rheology
edited by
A.
Co
,
L. G.
Leal
,
R. H.
Colby
, and
A. J.
Giacomin
(
American Institute of Physics
,
Monterey
,
2008b
), pp.
1405
1407
.
6.
Chinyoka
,
T.
,
Y.
Renardy
,
M.
Renardy
, and
D. B.
Khismatullin
, “
Two-dimensional study of drop deformation under simple shear for Oldroyd-B liquids
,”
J. Non-Newtonian Fluid Mech.
130
,
45
56
(
2005
).
7.
Chung
,
C.
,
M. A.
Hulsen
,
J. M.
Kim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Numerical study on the effect of viscoelasticity on drop deformation in simple shear flow and 5:1:5 planar contradiction /expansion microchannel
,”
J. Non-Newtonian Fluid Mech.
155
,
80
93
(
2008
).
8.
Dressler
,
M.
, and
B. J.
Edwards
, “
The influence of matrix viscoelasticity on the rheology of polymer blends
,”
Rheol. Acta
43
,
257
282
(
2004
).
9.
Elmendorp
,
J. J.
, and
R. J.
Maalcke
, “
A study on polymer blending microrheology
,”
Polym. Eng. Sci.
25
,
1041
1047
(
1985
).
10.
Greco
,
F.
, “
Drop deformation for non-Newtonian fluids in slow flows
,”
J. Non-Newtonian Fluid Mech.
107
,
111
131
(
2002
).
11.
Guido
,
S.
, and
F.
Greco
, “
Drop shape under slow steady shear flow and during relaxation. Experimental results and comparison with theory
,”
Rheol. Acta
40
,
176
184
(
2001
).
12.
Guido
,
S.
, and
F.
Greco
, “
Dynamics of a liquid drop in a flowing immiscible liquid
,” in
Rheology Reviews 2004
, edited by
D. M.
Binding
and
K.
Walters
(
The British Society of Rheology
,
Aberystwyth
,
2004
), pp.
99
142
.
13.
Guido
,
S.
,
M.
Simeone
, and
F.
Greco
, “
Effects of matrix viscoelasticity on drop deformation in dilute polymer blends under slow shear flow
,”
Polymer
44
,
467
471
(
2003a
).
14.
Guido
,
S.
,
M.
Simeone
, and
F.
Greco
, “
Deformation of a Newtonian drop in a viscoelastic matrix under steady shear flow—Experimental validation of slow flow theory
,”
J. Non-Newtonian Fluid Mech.
114
,
65
82
(
2003b
).
15.
Guido
,
S.
,
M.
Simeone
, and
M.
Villone
, “
Diffusion effects on the interfacial tension of immiscible polymer blends
,”
Rheol. Acta
38
,
287
296
(
1999
).
16.
Janssen
,
P. J. A.
, and
P. D.
Anderson
, “
Boundary-integral method for drop deformation between parallel plates
,”
Phys. Fluids
19
,
043602
(
2007
).
17.
Khismatullin
,
D.
,
Y.
Renardy
, and
M.
Renardy
, “
Development and implementation of VOF-PROST for 3D viscoelastic liquid-liquid simulations
,”
J. Non-Newtonian Fluid Mech.
140
,
120
131
(
2006
).
18.
Lerdwijitjarud
,
W.
,
R. G.
Larson
,
A.
Sirivat
, and
M. J.
Solomon
, “
Influence of weak elasticity of dispersed phase on droplet behaviour in sheared polybutadiene/poly(dimethylsiloxane)blends
,”
J. Rheol.
47
,
37
58
(
2003
).
19.
Lerdwijitjarud
,
W.
,
A.
Sirivat
, and
R. G.
Larson
, “
Influence of dispersed-phase elasticity on steady-state deformation and breakup of droplets in simple shearing flow of immiscible polymer blends
,”
J. Rheol.
48
,
843
862
(
2004
).
20.
Maffettone
,
P. L.
, and
F.
Greco
, “
Ellipsoidal drop model for single droplet dynamics with non-Newtonian fluids
,”
J. Rheol.
48
,
83
100
(
2004
).
21.
Maffettone
,
P. L.
,
F.
Greco
,
M.
Simeone
, and
S.
Guido
, “
Analysis of start-up dynamics of a single drop though an ellipsoidal drop model for non-Newtonian fluids
,”
J. Non-Newtonian Fluid Mech.
126
,
145
151
(
2005
).
22.
Maffettone
,
P. L.
, and
M.
Minale
, “
Equation of change for ellipsoidal drops in viscous flow
,”
J. Non-Newtonian Fluid Mech.
78
,
227
241
(
1998
)
23.
Maffettone
,
P. L.
, and
M.
Minale
, “
Erratum
,”
J. Non-Newtonian Fluid Mech.
84
(
1
),
105
106
(
1999
).
24.
Mighri
,
F.
, and
P. J.
Carreau
, “
Influence of elastic properties on drop deformation and breakup in shear flow
,”
J. Rheol.
42
,
1477
1490
(
1998
).
25.
Minale
,
M.
, “
Deformation of a non-Newtonian ellipsoidal drop in a non-Newtonian matrix: Extension of Maffettone–Minale model
,”
J. Non-Newtonian Fluid Mech.
123
,
151
160
(
2004
).
26.
Minale
,
M.
, “
A phenomenological model for wall effects on the deformation of an ellipsoidal drop in viscous flow
,”
Rheol. Acta
47
,
667
675
(
2008
).
27.
Renardy
,
Y.
, “
The effects of confinement and inertia on the production of droplets
,”
Rheol. Acta
46
,
521
529
(
2007
).
28.
Shapira
,
M.
, and
S.
Haber
, “
Low Reynolds number motion of a droplet in shear flow including wall effects
,”
Int. J. Multiphase Flow
16
,
305
321
(
1990
).
29.
Sibillo
,
V.
,
S.
Guido
,
F.
Greco
, and
P. L.
Maffettone
, “
Single drop dynamics under shearing flow in systems with a viscoelastic phase
,”
Macromol. Symp.
228
,
31
39
(
2005
).
31.
Sibillo
,
V.
,
M.
Simeone
,
S.
Guido
,
F.
Greco
, and
P. L.
Maffettone
, “
Start-up and retraction dynamics of a Newtonian drop in a viscoelastic matrix under simple shear flow
,”
J. Non-Newtonian Fluid Mech.
134
,
27
32
(
2006a
).
30.
Sibillo
,
V.
,
G.
Pasquariello
,
V.
Simeone
,
V.
Cristini
, and
S.
Guido
, “
Drop deformation in microconfined shear flow
,”
Phys. Rev. Lett.
97
,
054502
(
2006b
).
32.
Taylor
,
G. I.
, “
The formation of emulsions in definable fields of flow
,”
Proc. R. Soc. London, Ser. A
146
,
501
523
(
1934
).
33.
Tucker
,
C. L.
, and
P.
Moldenaers
, “
Microstructural evolution in polymer blends
,”
Annu. Rev. Fluid Mech.
34
,
177
210
(
2002
).
34.
Van Puyvelde
,
P.
,
A.
Vananroye
,
R.
Cardinaels
, and
P.
Moldenaers
, “
Review on morphology development of immiscible blends in confined shear flow
,”
Polymer
51
,
5363
5372
(
2008
).
35.
Vananroye
,
A.
,
R.
Cardinaels
,
P.
Van Puyvelde
, and
P.
Moldenaers
, “
Effect of confinement and viscosity ratio on the dynamics of single droplets during transient shear flow
,”
J. Rheol.
52
,
1459
1475
(
2008a
).
36.
Vananroye
,
A.
,
P. J. A.
Janssen
,
P. D.
Anderson
,
P.
Van Puyvelde
, and
P.
Moldenaers
, “
Microconfined equiviscous droplet deformation: Comparison of experimental and numerical results
,”
Phys. Fluids
20
,
013101
(
2008b
).
37.
Vananroye
,
A.
,
P.
Van Puyvelde
, and
P.
Moldenaers
, “
Effect of confinement on the steady-state behaviour of single droplets during shear flow
,”
J. Rheol.
51
,
139
153
(
2007
).
42.
Verhulst
,
K.
,
P.
Moldenaers
, and
M.
Minale
, “
Drope shape dynamics of a Newtonian drop in a non-Newtonian matrix during transient and steady shear flow
,”
J. Rheol.
51
,
261
273
(
2007a
).
38.
Verhulst
,
K.
,
R.
Cardinaels
, and
P.
Moldenaers
, “
Steady state droplet deformation and orientation during shear flow in blends with a viscoelastic component: Bulk and confined conditions
,” in
Proceedings of the Polymer Processing Society Europe/Africa Regional Meeting, Göteborg
(Polymer Processing Society, Göteborg,
2007b
).
41.
Verhulst
,
K.
,
R.
Cardinaels
,
Y.
Renardy
, and
P.
Moldenaers
, “
Steady state droplet deformation and orientation during bulk and confined shear flow in blends with one viscoelastic component: Experiments, modeling and simulations
,” in
Proceedings of the 15th International Congress on Rheology, Monterey
, edited by
A.
Co
,
L. G.
Leal
,
R. H.
Colby
, and
A. J.
Giacomin
(
American Institute of Physics
,
Monterey
,
2008
), pp.
1000
1002
.
40.
Verhulst
,
K.
,
R.
Cardinaels
,
P.
Moldenaers
,
Y.
Renardy
, and
S.
Afkhami
, “
Influence of viscoelasticity on drop deformation and orientation in shear flow: Part 1. Stationary states
,”
J. Non-Newtonian Fluid Mech.
156
,
29
43
(
2009a
).
39.
Verhulst
,
K.
,
R.
Cardinaels
,
P.
Moldenaers
,
S.
Afkhami
, and
Y.
Renardy
, “
Influence of viscoelasticity on drop deformation and orientation in shear flow. Part 2: Dynamics
,”
J. Non-Newtonian Fluid Mech.
156
,
44
57
(
2009b
).
43.
Vrentas
,
J. S.
,
D. C.
Venerus
, and
C. M.
Vrentas
, “
An exact analysis of reservoir effects for rotational viscosimeters
,”
Chem. Eng. Sci.
46
,
33
37
(
1991
).
44.
Yu
,
W.
,
M.
Bousmina
,
C.
Zhou
, and
C. L.
Tucker
, “
Theory for drop deformation in viscoelastic systems
,”
J. Rheol.
48
,
417
438
(
2004
).
45.
Yu
,
W.
,
C.
Zhou
, and
M.
Bousmina
, “
Theory of morphology evolution in mixtures of viscoelastic immiscible components
,”
J. Rheol.
49
,
215
236
(
2005
).
46.
Yue
,
P.
,
J. J.
Feng
,
C.
Liu
, and
J.
Shen
, “
Viscoelastic effects on drop deformation in steady shear
,”
J. Fluid Mech.
540
,
427
437
(
2005
).
You do not currently have access to this content.