We study nematodynamics of a mesoscopic system consisting of sheared biaxial liquid crystalline polymers using a hydrodynamical kinetic theory, in which the biaxial liquid crystal polymer is modeled as a rigid, biaxial, ellipsoidal molecule immersed in viscous solvent. The governing Smoluchowski equation in the model is solved in selected regions of the material parameter space and a range of accessible shear rates using a Wigner–Galerkin spectral method. In addition to the truly biaxial flow-aligning steady states, log-rolling steady states, and out-of-plane steady states, we report the presence of two new time-periodic motions, chaotic motion and associated phase transitions in a range of shear rates and selected material parameters. Rheological signatures of the sheared mesoscopic system are identified with predominant shear thinning in all phases and alternating signs between the normal stress differences in steady vs time-dependent motions.

1.
Acharya
,
B. R.
,
A.
Primak
, and
S.
Kumar
, “
Biaxial nematic phase in bent-core thermotropic mesogens
,”
Phys. Rev. Lett.
92
,
145506
(
2004
).
2.
Allen
,
M. P.
, “
Computer-simulation of a biaxial liquid crystal
,”
Liq. Cryst.
8
,
499
(
1990
).
3.
Batchelor
,
G. K.
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
570
(
1970
).
4.
Bates
,
M. A.
, and
G. R.
Luckhurst
, “
Biaxial nematic phases and V-shaped molecules: A Monte Carlo simulation study
,”
Phys. Rev. E
72
,
051702
(
2005
).
5.
Berjnov
,
V.
,
V.
Cabuil
,
R.
Perzynski
, and
Y.
Raikher
, “
Lyotropic system potassium laurate/1-decanol/water as a carrier medium for a ferronematic liquid crystal: Phase diagram study
,”
J. Phys. Chem. B
102
,
7132
(
1998
).
6.
Bernardi
,
R.
, and
C.
Zannoni
, “
Do thermotropic biaxial nematics exist? A Monte Carlo study of biaxial GayBerne particles
,”
J. Chem. Phys.
113
,
5971
(
2000
).
7.
Biscarini
,
F.
,
C.
Chiccoli
,
P.
Pasini
,
F.
Semeria
, and
C.
Zannoni
, “
Phase diagram and orientational order in a biaxial lattice model: A Monte Carlo study
,”
Phys. Rev. Lett.
75
,
1803
(
1995
).
8.
Bisi
,
F.
,
E. G.
Virga
,
E. C.
Gartland
,
G.
De Matteis
,
A. M.
Sonnet
, and
G. E.
Durand
, “
Universal mean-field phase diagram for biaxial nematics obtained from a minimax principle
,”
Phys. Rev. E
73
,
051709
(
2006
).
9.
Calderer
,
M. C.
,
M. G.
Forest
, and
Q.
Wang
, “
Kinetic theories and mesoscopic models for solutions of nonhomogeneous liquid crystal polymers
,”
J. Non-Newtonian Fluid Mech.
120
,
69
78
(
2004
).
10.
Carlsson
,
T.
, and
F.
Leslie
, “
Behavior of biaxial nematics in the presence of electric and magnetic-field evidence of bistability
,”
Liq. Cryst.
10
,
325
340
(
1991
).
11.
Chiccoli
,
C.
,
P.
Pasini
,
F.
Semeria
, and
C.
Zannoni
, “
Monte Carlo simulations of a biaxial liquid crystal model using the Condor processing system
,” Lecture Notes in Computer Science, 2110,
555
560
(
2001
).
12.
de Gennes
,
P. G.
, and
J.
Prost
,
Physics of Liquid Crystals
(
Clarendon Press
,
Oxford
,
1993
).
13.
De Matteis
,
G.
,
S.
Romano
, and
E.
Virga
, “
Bifurcation analysis and computer simulation of biaxial liquid crystals
,”
Phys. Rev. E
72
,
04170
(
2005
).
19.
De Melo Filho
,
A. A.
,
A.
Laverde
, and
F. Y.
Fujiwara
, “
Observation of two biaxial nematic mesophases in the tetradecyltrimethylammonium bromide/decanol/water system
,”
Langmuir
19
,
1127
1132
(
2003
).
14.
Doi
,
M.
, and
S. F.
Edwards
,
Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford
,
1986
).
16.
Emsley
,
J. W.
,
Nuclear Magnetic Resonance of Liquid Crystals
,
NATO Advanced Study Institute, Series C: Mathematical and Physical Sciences
Vol.
141
(
Reidel
,
Dordrecht
1985
).
17.
Feng
,
J.
,
G.
Sgalari
, and
L. G.
Leal
, “
A theory for flowing nematic polymers with orientational distortion
,”
J. Rheol.
44
,
1085
1101
(
2000
).
18.
Figyeirinhas
,
J. L.
,
C.
Cruz
,
D.
Filip
,
G.
Feio
,
A. C.
Ribeiro
,
Y.
Frere
,
T.
Meyer
, and
G. H.
Mehl
, “
Deuterium NMR investigation of the biaxial nematic phase in an organosiloxane tetrapode
,”
Phys. Rev. Lett.
94
,
107802
(
2005
).
20.
Forest
,
M. G.
, and
Q.
Wang
, “
Monodomain response of finite-aspect-ratio macromolecules in shear and related linear flows
,”
Rheol. Acta
42
,
20
46
(
2003
).
21.
Forest
,
M. G.
,
Q.
Wang
, and
R.
Zhou
, “
The weak shear kinetic phase diagram for nematic polymers
,”
Rheol. Acta
43
,
17
37
(
2004a
).
22.
Forest
,
M. G.
,
Q.
Wang
, and
R.
Zhou
, “
The flow-phase diagram of Doi theory for sheared nematic polymers, II: Finite shear rates
,”
Rheol. Acta
44
,
80
93
(
2004b
).
23.
Forest
,
M. G.
,
S.
Sircar
,
Q.
Wang
, and
R.
Zhou
, “
Monodomain dynamics for rigid rod and platelet suspensions in strongly coupled coplanar linear flow and magnetic fields. II. Kinetic theory
,”
Phys. Fluids
18
,
103102
(
2006
).
24.
Freiser
,
M. J.
, “
Ordered states of a nematic liquid
,”
Phys. Rev. Lett.
24
,
1041
(
1970
).
26.
Grosso
,
M.
,
R.
Keunings
,
S.
Crescitelli
, and
P. L.
Maffettone
, “
Prediction of chaotic dynamics in sheared liquid crystalline polymers
,”
Phys. Rev. Lett.
86
,
3184
3187
(
2001
).
27.
Harden
,
J.
,
B.
Mbanga
,
N.
Eber
,
K.
Fodor-Csorba
,
S.
Sprunt
,
J. T.
Gleeson
, and
A.
Jakli
, “
Giant flexoelectricity of bent-core nematic liquid crystals
,”
Phys. Rev. Lett.
97
,
157802
(
2006
).
28.
Johnston
,
S. J.
,
R. J.
Low
, and
M. P.
Neal
, “
Computer simulation of apolar bent-core and rodlike molecules
,”
Phys. Rev. E
65
,
051706
(
2002
).
29.
Longa
,
L.
,
P.
Grzybowski
,
S.
Romano
, and
E. G.
Virga
, “
Minimal coupling model of the biaxial nematic phase
,”
Phys. Rev. E
71
,
051714
(
2005
).
30.
Larson
,
R. G.
, “
Arrested tumbling in shearing flows of liquid-crystal polymers
,”
Macromolecules
23
,
3983
3992
(
1990
).
31.
Larson
,
R. G.
, and
H. C.
Ottinger
, “
Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid-crystalline polymers
,”
Macromolecules
24
,
6270
6282
(
1991
).
32.
Leslie
,
F. M.
,
Theory of Flow Phenomena in Liquid Crystals: Advances in Liquid Crystals
(
Academic
,
New York
,
1979
), Vol.
4
, pp.
1
81
.
33.
Luckhurst
,
G. R.
, “
Liquid crystals: A missing phase found at last?
,”
Nature (London)
430
,
413
414
(
2004
).
34.
Madsen
,
L. A.
,
T. J.
Dingemans
,
M.
Nakata
, and
E. T.
Samulski
, “
Thermotropic biaxial nematic liquid crystals
,”
Phys. Rev. Lett.
92
,
145505
(
2004
).
35.
Merkel
,
K.
,
A.
Kocot
,
J. K.
Vij
,
R.
Korlacki
,
G. H.
Mehl
, and
T.
Meyer
, “
Thermotropic biaxial nematic phase in liquid crystalline organo-siloxane tetrapodes
,”
Phys. Rev. Lett.
93
,
237801
(
2004
).
36.
Nordio
,
P. L.
,
G.
Rigatti
, and
U.
Segre
, “
Dielectric relaxation theory in nematic liquids
,”
Mol. Phys.
25
,
129
136
(
1973
).
37.
Pelaez
,
J.
, and
M.
Wilson
, “
Atomistic simulations of a thermotropic biaxial liquid crystal
,”
Phys. Rev. Lett.
97
,
267801
(
2006
).
38.
Roscoe
,
R.
, “
On the rheology of a suspension of viscoelastic spheres in a viscous liquid
,”
J. Fluid Mech.
28
,
273
293
(
1967
).
39.
Rose
,
M. E.
,
Elementary Theory of Angular Momentum
(
Wiley
,
New York
,
1957
).
40.
Severing
,
K.
, and
K.
Saalwachter
, “
Biaxial nematic phase in a thermotropic liquid-crystalline side-chain polymer
,”
Phys. Rev. Lett.
92
,
125501
(
2004
).
41.
Sircar
,
S.
, “
Dynamics and rheology of biaxial liquid crystal polymers
,” Ph.D. thesis,
2008
.
42.
Sonnet
,
A. M.
,
E. G.
Virga
, and
G. E.
Durand
, “
Dielectric shape dispersion and biaxial transitions in nematic liquid crystals
,”
Phys. Rev. E
67
,
061701
(
2003
).
43.
Straley
,
J. P.
, “
Ordered phases of a liquid of biaxial particles
,”
Phys. Rev. A
10
,
1881
1887
(
1974
).
44.
Tjipto-Margo
,
B.
, “
The Onsager theory of the isotropicnematic liquidcrystal transition: Biaxial particles in uniaxial phases
,”
J. Chem. Phys.
94
,
4546
4556
(
1991
).
45.
Wang
,
Q.
, “
A hydrodynamic theory for solutions of nonhomogeneous nematic liquid crystalline polymers of different configurations
,”
J. Chem. Phys.
116
,
9120
9136
(
2002
).
46.
Wang
,
Q.
,
S.
Sircar
, and
H.
Zhou
, “
Steady solutions of the Smoluchowski equation for nematic polymers under imposed fields
,”
J. Chem. Phys.
3
,
605
620
(
2005
).
47.
Yu
,
L. J.
, and
A.
Saupe
, “
Observation of a biaxial nematic phase in potassium laurate-1-decanol-water mixtures
,”
Phys. Rev. Lett.
45
,
1000
1003
(
1980
).
48.
Zannoni
,
C.
, “
A theory of time dependent fluorescence depolarization in liquid crystals
,”
Mol. Phys.
38
,
1813
1827
(
1979
).
You do not currently have access to this content.