Aqueous solutions of microbially produced sodium hyaluronate in phosphate buffered saline (pH=7.4, T=25°C) were characterized with regard to their molecular parameters and viscoelastic behavior. The weight-average molar mass (MW), z-average radius of gyration (RG), and their distributions were determined using a hyphenated assembly of size exclusion chromatography, multi-angle light scattering, and a differential refractive index detector. Correlation of the obtained results with viscometric data enabled the establishment of [η]-M and RG-Mrelationships ([η]=0.034MW0.79; RG=0.039MW0.59). Viscoelastic behavior was investigated by steady state shear experiments. The viscosity yield was determined for varying concentrations and molar masses using shear rates from 103 to 103s1. The elastic behavior in shear flow, represented by the first normal stress difference N1, has been detected on one hand via rheo-mechanical experiments and on the other hand being correlated from the rheo-optical material functions flow birefringence Δn and its orientation ϕ utilizing the stress-optical rule. This correlation enabled the extension of the measurement range toward lower absolute values of N1 of more than two decades. The correlated values were in good agreement with the data obtained by rheo-mechanical measurements.

1.
Altmann
,
S.
,
Zeidler
,
H.
,
Gaffga
,
R.
, and
Kulicke
,
W.-M.
, “
Rheology of pathological synovial-fluids. 2. Structural rheology of hyaluronic-acid
,”
Rheol. Acta
19
,
642
659
(
1980
).
2.
Andersson
,
M.
,
Wittgren
,
B.
, and
Wahlund
,
K.-G.
, “
Accuracy in multiangle light scattering measurements for molar mass and radius estimations. Model calculations and experiments
,”
Anal. Chem.
75
,
4279
4291
(
2003
).
3.
Berriaud
,
N.
,
Milas
,
M.
, and
Rinaudo
,
M.
, “
Rheological study on mixtures of different molecular weight hyaluronates
,”
Int. J. Biol. Macromol.
16
,
137
142
(
1994
).
4.
Bothner
,
H.
,
Waaler
,
T.
, and
Wik
,
O.
, “
Limiting viscosity number weight average melocular weight of hyaluronate samples produced by heat degradation
,”
Int. J. Biol. Macromol.
10
,
287
291
(
1988
).
5.
Brandt
,
K. D.
,
Block
,
J. A.
,
Michalski
,
J. P.
,
Moreland
,
L. W.
,
Caldwell
,
J. R.
, and
Lavin
,
P. T.
, “
Efficacy and safety of intraarticular sodium hyaluronate in knee osteoarthritis. ORTHOVISC study group
,”
Clin. Orthop. Relat. Res.
385
,
130
143
(
2001
).
6.
Calciu-Rusu
,
D.
,
Rothfuss
,
E.
,
Eckelt
,
J.
,
Haase
,
T.
,
Dick
,
H. B.
, and
Wolf
,
B. A.
, “
Rheology of sodium hyaluronate saline solutions for ophthalmic use
,”
Biomacromolecules
8
,
1287
1292
(
2007
).
7.
Chabrecek
,
P.
,
Soltes
,
L.
,
Kallay
,
Z.
, and
Novak
,
I.
, “
Gel permeation chromatographic characterization of sodium hyaluronate and its fractions prepared by ultrasonic degradation
,”
Chromatographia
30
,
201
204
(
1990
).
8.
Chong
,
F. C.
,
Blank
,
L. M.
,
Mclaughlin
,
R.
, and
Nielsen
,
L. K.
, “
Microbial hyaluronic acid production
,”
Appl. Microbiol. Biotechnol.
66
,
341
351
(
2005
).
9.
Clasen
,
C.
, and
W. M.
Kulicke
, “
A convenient way of interpreting steady shear rheo-optical data of semi-dilute polymer solutions
,”
Rheol. Acta
40
,
74
85
(
2001
).
10.
Clasen
,
C.
, and
W. M.
Kulicke
, “
Rheo-optical studies of barley (1>3)(1>4)-beta-glucan solution: Detection of the flow behavior of aggregates in the sol state
,”
J. Rheol.
47
,
321
335
(
2003
).
11.
Cleland
,
R. L.
, and
J. L.
Wang
, “
Ionic polysaccharides. 3. Dilute solution properties of hyaluronic acid fractions
,”
Biopolymers
9
,
799
810
(
1970
).
12.
Dick
,
B.
,
Schwenn
,
O.
, and
Pfeiffer
,
N.
, “
Einteilung der viskoelastischen substanzen für die ophthalmochirugie
,”
Ophthalmologe
96
,
193
211
(
1999
).
13.
Dobrynin
,
A. V.
, “
Electrostatic persistence length of semiflexible and flexible polyelectrolytes
,”
Macromolecules
38
,
9304
9314
(
2005
).
14.
Eisner
,
G.
, “
Grundlage für die praktische Anwendung viskoelastischer Substanzen in der Augenchirugie
,”
Fortschr. Ophthalmol.
86
,
19
22
(
1989
).
15.
Flory
,
P. J.
, and
T. G.
,
Fox
, Jr.
, “
Treatment of intrinsic viscosities
,”
J. Am. Chem. Soc.
73
,
1904
1908
(
1951
).
16.
Fouissac
,
E.
,
Milas
,
M.
, and
Rinaudo
,
M.
, “
Shear-rate, concentration, molecular weight, and temperature viscosity dependences of hyaluronate, a wormlike polyelectrolyte
,”
Macromolecules
26
,
6945
6951
(
1993
).
17.
Fouissac
,
E.
,
Rinaudo
,
M.
, and
Borsali
,
R.
, “
Influence of the ionic strength on the dimensions of sodium hyaluronate
,”
Macromolecules
25
,
5613
5617
(
1992
).
18.
Fuller
,
G. G.
,
Optical Rheometry of Complex Fluids
(
Oxford University Press
,
London
,
1995
).
19.
Fuller
,
G. G.
, and
K. J.
Mikkelsen
, “
Optical rheometry using a rotary polarization modulator
,”
J. Rheol.
33
,
761
769
(
1989
).
20.
Gatej
,
I.
,
Popa
,
M.
, and
Rinaudo
,
M.
, “
Role of the pH on hyaluronan behavior in aqueous solution
,”
Biomacromolecules
6
,
61
67
(
2005
).
21.
Graessley
,
W. W.
, “
Entanglement concept in polymer rheology
,”
Adv. Polym. Sci.
16
,
179
226
(
1974
).
22.
Hamilton
,
R. G.
,
Strobos
,
J.
, and
Adkinson
,
N. F.
, “
Immunogenicity studies of cosmetically administered nonanimal-stabilized hyaluronic acid particles
,”
Dermatol. Surg.
33
,
176
185
(
2007
).
23.
Hascall
,
V. C.
, and
D.
Heinegard
, “
Aggregation of cartilage proteoglycans. I. Role of hyaluronic acid
,”
J. Biol. Chem.
249
,
4232
4241
(
1974a
).
24.
Hascall
,
V. C.
, and
D.
Heinegard
, “
Aggregation of cartilage proteoglycans. II. Oligosaccharide competitors of the proteoglycan-hyaluronic acid interaction
,”
J. Biol. Chem.
249
,
4242
4249
(
1974b
).
25.
Hayashi
,
K.
,
Tsutsumi
,
K.
,
Norisuye
,
T.
, and
Teramoto
,
A.
, “
Electrostatic contributions to chain stiffness and excluded-volume effects in sodium hyaluronate solutions
,”
Polym. J. (Tokyo, Jpn.)
28
,
922
928
(
1996
).
26.
Hokputsa
,
S.
,
Jumel
,
K.
,
Alexander
,
C.
, and
Harding
,
S. E.
, “
A comparison of molecular mass determination of hyaluronic acid using SEC/MALLS and sedimentation equilibrium
,”
Eur. Biophys. J.
32
,
450
456
(
2003
).
27.
Huggins
,
M. L.
, “
The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration
,”
J. Am. Chem. Soc.
64
,
2716
2718
(
1942
).
28.
Huglin
,
M. B.
,
Polymer Handbook
(
Wiley
,
New York
,
1989
).
29.
Janeschitz-Kriegl
,
H.
, “
Flow birefrigence of elastic-viscous polymer systems
,”
Adv. Polym. Sci.
6
,
170
(
1969
).
30.
Janeschitz-Kriegl
,
H.
,
Polymer Melt Rheology and flow birefringence
(
Springer-Verlag
,
Berlin
,
1981
).
31.
Kogan
,
G.
,
Soltes
,
L.
,
Stern
,
R.
, and
Gemeiner
,
P.
, “
Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications
,”
Biotechnol. Lett.
29
,
17
25
(
2007
).
32.
Krause
,
W. E.
,
Bellomo
,
E. G.
, and
Colby
,
R. H.
, “
Rheology of sodium hyaluronate under physiological conditions
,”
Biomacromolecules
2
,
65
69
(
2001
).
33.
Kulicke
,
W. -M.
and
N.
Böse
, “
Bestimmung der molmassenverteilung sowie der stabilitätsgrenze von polyacrylamiden unter benutzung einer kombinierten ausschlußchromatographie-kleinwinkel-laser-streulichtphotometer-anlage
,”
Colloid Polym. Sci.
262
,
197
207
(
1984
).
34.
Kulicke
,
W. -M.
, and
C.
Clasen
,
Viscosimetry of Polymers and Polyelectrolytes
(
Springer
,
Heidelberg
,
2004
).
35.
Kulicke
,
W. M.
, and
R.
Kniewske
, “
The shear viscosity dependence on concentration, molecular-weight, and shear rate of polystyrene solutions
,”
Rheol. Acta
23
,
75
83
(
1984
).
36.
Laurent
,
T. C.
,
Ryan
,
M.
, and
Pietruszkiewicz
,
A.
, “
Fractionation of hyaluronic acid. Polydispersity of hyaluronic acid from the bovine vitreous body
,”
Biochim. Biophys. Acta
42
,
476
485
(
1960
).
37.
Lee
,
H.
,
Kim
,
H.
, and
Moon
,
M. H.
, “
Field programming in frit inlet asymmetrical flow field-flow fractionation/multiangle light scattering: Application to sodium hyaluronate
,”
J. Chromatogr. A
1089
,
203
210
(
2005
).
38.
Li
,
M.
,
Rosenfeld
,
L.
,
Vilar
,
R. E.
, and
Cowman
,
M. K.
, “
Degradation of hyaluronan by peroxynitrite
,”
Arch. Biochem. Biophys.
341
,
245
250
(
1997
).
39.
Lodge
,
A. S.
, “
A network theory of flow birefrigence and stress in concentrated polymer solutions
,”
Trans. Faraday Soc.
52
,
120
(
1956
).
40.
Mendichi
,
R.
,
Schieroni
,
A. G.
,
Grassi
,
C.
, and
Re
,
A.
, “
Characterization of ultra-high molar mass hyaluronan. 1. Off-line static methods
,”
Polymer
39
,
6611
6620
(
1998
).
41.
Mendichi
,
R.
,
Soltes
,
L.
, and
Schieroni
,
A. G.
, “
Evaluation of radius of gyration and intrinsic viscosity molar mass dependence and stiffness of hyaluronan
,”
Biomacromolecules
4
,
1805
1810
(
2003
).
42.
Meyer
,
K.
, and
J. W.
Palmer
, “
The polysaccharide of the vitreous humor
,”
J. Biol. Chem.
107
,
629
634
(
1934
).
43.
O'Regan
,
M.
,
Martini
,
I.
,
Crescenzi
,
F.
,
DeLuca
,
C.
, and
Lansing
,
M.
, “
Molecular mechanisms and genetics of hyaluron biosynthesis
,”
Int. J. Biol. Macromol.
16
,
283
286
(
1994
).
44.
Orvisky
,
E.
,
Soltes
,
L.
,
Chabrecek
,
P.
,
Novak
,
I.
, and
Stancikova
,
M.
, “
Size-exclusion chromatographic characterization of sodium hyaluronate fractions prepared by high energetic sonication
,”
Chromatographia
37
,
20
22
(
1993
).
45.
Reinhardt
,
U.
, “
Rheo-optical characterization of the tobacco-mosaic-virus
,”
Macromol. Chem. Phys.
196
,
63
74
(
1995
).
46.
Rinaudo
,
M.
,
Roure
,
I.
,
Milas
,
M.
, and
Malovikova
,
A.
, “
Electrostatic interactions in aqueous solutions of ionic polysaccharides
,”
Int. J. Polym. Anal. Charact.
4
,
57
69
(
1997
).
47.
Rousseaux
,
G.
,
A.
de Wit
, and
M.
Martin
, “
Viscous fingering in packed chromatographic columns: Linear stability analysis
,”
J. Chromatogr. A
1149
,
254
273
(
2007
).
48.
Schittenhelm
,
N.
, and
W. M.
Kulicke
, “
Producing homologous series of molar masses for establishing structure-property relationships with the aid of ultrasonic degradation
,”
Macromol. Chem. Phys.
201
,
1976
1984
(
2000
).
49.
Soltes
,
L.
,
Mendichi
,
R.
,
Lath
,
D.
,
Mach
,
M.
, and
Bakos
,
D.
, “
Molecular characteristics of some commercial high-molecular-weight hyaluronans
,”
Biomed. Chromatogr.
16
,
459
462
(
2002
).
50.
Terbojevich
,
M.
,
Cosani
,
A.
,
Palumbo
,
M.
, and
Pregnolato
,
F.
, “
Structural properties of hyaluronic acid in moderately concentrated solutions
,”
Carbohydr. Res.
149
,
363
377
(
1986
).
51.
Weissmann
,
B.
, and
K.
Meyer
, “
The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord
,”
J. Am. Chem. Soc.
76
,
1753
1757
(
1954
).
52.
Wyatt
,
P. J.
, “
Light scattering and the absolute characterization of macromolecules
,”
Anal. Chim. Acta
272
,
1
40
(
1993
).
53.
Yanaki
,
T.
, and
M.
Yamaguchi
, “
Shear-rate dependence of the intrinsic viscosity of sodium hyaluronate in 0.2M sodium chloride solution
,”
Chem. Pharm. Bull. (Tokyo)
42
,
1651
1654
(
1994
).
54.
Zeidler
,
H.
,
Altmann
,
S.
,
John
,
B.
,
Gaffga
,
R.
, and
Kulicke
,
W.-M.
, “
Rheologie pathologischer gelenkflüssigkeiten. 1. Weitere ergebnisse zur viskoelastizität
,”
Rheol. Acta
18
,
151
167
(
1979
).
55.
Zimm
,
B. H.
, “
The scattering of light and the radial distribution function of high-polymer solutions
,”
J. Chem. Phys.
16
,
1093
1099
(
1948
).
You do not currently have access to this content.