Droplets containing a dilute polymer solution enter a T-shaped microfluidic junction and stretch as they pass through the stagnation point. Depending on the initial aspect ratio and speed, droplets may break into two segments. We characterize the breaking-nonbreaking behavior of these droplets and find that viscoelastic droplets are less stable than Newtonian droplets of comparable shear viscosity. When droplets break, we observe that viscoelastic droplet segments are connected by persistent filaments that first undergo stretching due to drag of the outer viscous liquid on the large connected segments. Later, filaments undergo iterated stretching and develop a series of beads along their length. Secondary filaments between beads no longer stretch with the outer flow, but rather they exhibit an exponentially decreasing diameter consistent with elastocapillary breakup. The relaxation time obtained from the filament diameter profiles is close to the estimated Zimm relaxation time for the polymer solution, but depends on the global flow parameters, including the initial size and speed of the droplet prior to entering the T-junction. Based on the microscale diameters of the filaments, we suggest that splitting of droplets at microfluidic T-junctions may be a useful way to characterize the extensional rheology of low viscosity elastic liquids.

1.
Amarouchene
,
Y.
,
D.
Bonn
,
J.
Meunier
, and
H.
Kellay
, “
Inhibition of the finite-time singularity during droplet fission of a polymeric fluid
,”
Phys. Rev. Lett.
86
,
3558
3561
(
2001
).
2.
Anna
,
S. L.
and
G. H.
McKinley
, “
Elasto-capillary thinning and breakup of model elastic liquids
,”
J. Rheol.
45
,
115
138
(
2001
).
3.
Anna
,
S. L.
,
G. H.
McKinley
,
D. A.
Nguyen
,
T.
Sridhar
,
S. J.
Muller
,
J.
Huang
, and
D. F.
James
, “
An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids
,”
J. Rheol.
45
,
83
114
(
2001
).
4.
Arratia
,
P. E.
,
J. P.
Gollub
, and
D. J.
Durian
, “
Polymeric filament thinning and breakup in microchannels
,”
Phys. Rev. E
77
,
036309
(
2008
).
5.
Bazilevskii
,
A. V.
,
V. M.
Entov
, and
A. N.
Rozhkov
, “
Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions
,”
Polym. Sci., Ser. A Ser. B
43
,
716
726
(
2001
).
6.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids. Volume 2: Kinetic Theory
(
Wiley Interscience
,
New York
,
1987
).
7.
Bousfield
,
D. W.
,
R.
Keunings
,
G.
Marrucci
, and
M. M.
Denn
, “
Nonlinear-analysis of the surface-tension driven breakup of viscoelastic filaments
,”
J. Non-Newtonian Fluid Mech.
21
,
79
97
(
1986
).
8.
Brandrup
,
J.
,
H.
Immergut
, and
W.
McDowell
, eds.,
Polymer Handbook
(
Wiley
,
New York
,
1975
).
9.
Chang
,
H. C.
,
E. A.
Demekhin
, and
E.
Kalaidin
, “
Iterated stretching of viscoelastic jets
,”
Phys. Fluids
11
,
1717
1737
(
1999
).
10.
Christanti
,
Y.
and
L. M.
Walker
, “
Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance
,”
J. Rheol.
46
,
733
748
(
2002
).
11.
Christopher
,
G. F.
and
S. L.
Anna
, “
Microfluidic methods for generating continuous droplet streams
,”
J. Phys. D: Appl. Phys.
40
,
R319
R336
(
2007
).
12.
Christopher
,
G. F.
,
J.
Bergstein
,
N. B.
End
,
M.
Poon
,
C.
Nguyen
, and
S. L.
Anna
, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip (to be published).
13.
Christopher
,
G. F.
,
N. N.
Noharuddin
,
J. A.
Taylor
, and
S. L.
Anna
, “
Experimental observations of the squeezing-to-dripping transition in microfluidic T-junctions
,”
Phys. Rev. E
78
,
036317
(
2008
b).
14.
Clasen
,
C.
,
J.
Eggers
,
M. A.
Fontelos
,
J.
Li
, and
G. H.
McKinley
, “
The beads-on-string structure of viscoelastic threads
,”
J. Fluid Mech.
556
,
283
308
(
2006
a).
15.
Clasen
,
C.
,
J. P.
Plog
,
W. M.
Kulicke
,
M.
Owens
,
C.
Macosko
,
L. E.
Scriven
,
M.
Verani
, and
G. H.
McKinley
, “
How dilute are dilute solutions in extensional flows?
J. Rheol.
50
,
849
881
(
2006
b).
16.
Cooper-White
,
J. J.
,
J. E.
Fagan
,
V.
Tirtaatmadja
,
D. R.
Lester
, and
D. V.
Boger
, “
Drop formation dynamics of constant low-viscosity, elastic fluids
,”
J. Non-Newtonian Fluid Mech.
106
,
29
59
(
2002
).
17.
Cristini
,
V.
and
Y. C.
Tan
, “
Theory and numerical simulation of droplet dynamics in complex flows—A review
,”
Lab Chip
4
,
257
264
(
2004
).
18.
De Menech
,
M.
, “
Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model
,”
Phys. Rev. E
73
,
031505
(
2006
).
19.
Dontula
,
P.
,
M.
Pasquali
,
L. E.
Scriven
, and
C. W.
Macosko
, “
Can extensional viscosity be measured with opposed-nozzle devices?
Rheol. Acta
36
,
429
448
(
1997
).
20.
Duffy
,
D. C.
,
J. C.
McDonald
,
O. J. A.
Schueller
, and
G. M.
Whitesides
, “
Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)
,”
Anal. Chem.
70
,
4974
4984
(
1998
).
21.
Edmond
,
K. V.
,
A. B.
Schofield
,
M.
Marquez
,
J. P.
Rothstein
, and
A. D.
Dinsmore
, “
Stable jets of viscoelastic fluids and self-assembled cylindrical capsules by hydrodynamic focusing
,”
Langmuir
22
,
9052
9056
(
2006
).
22.
Eggers
,
J.
and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
,
036601
(
2008
).
23.
Entov
,
V. M.
and
E. J.
Hinch
, “
Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid
,”
J. Non-Newtonian Fluid Mech.
72
,
31
53
(
1997
).
24.
Garstecki
,
P.
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Formation of droplets and bubbles in a microfluidic T-junction—Scaling and mechanism of break-up
,”
Lab Chip
6
,
437
446
(
2006
).
25.
Goldin
,
M.
,
H.
Yerushalmi
,
R.
Pfeffer
, and
R.
Shinnar
, “
Breakup of a laminar capillary jet of a viscoelastic fluid
,”
J. Fluid Mech.
38
,
689
711
(
1969
).
26.
Goren
,
S. L.
and
M.
Gottlieb
, “
Surface-tension-driven breakup of viscoelastic liquid threads
,”
J. Fluid Mech.
120
,
245
266
(
1982
).
27.
Graessley
,
W. W.
, “
Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power
,”
Polymer
21
,
258
262
(
1980
).
28.
Gupta
,
R. K.
,
D. A.
Nguyen
, and
T.
Sridhar
, “
Extensional viscosity of dilute polystyrene solutions: Effect of concentration and molecular weight
,”
Phys. Fluids
12
,
1296
1318
(
2000
).
29.
Husny
,
J.
and
J. J.
Cooper-White
, “
The effect of elasticity on drop creation in T-shaped microchannels
,”
J. Non-Newtonian Fluid Mech.
137
,
121
136
(
2006
).
30.
Ismagilov
,
R. F.
,
A. D.
Stroock
,
P. J. A.
Kenis
,
G.
Whitesides
, and
H. A.
Stone
, “
Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels
,”
Appl. Phys. Lett.
76
,
2376
2378
(
2000
).
31.
Kamholz
,
A. E.
,
B. H.
Weigl
,
B. A.
Finlayson
, and
P.
Yager
, “
Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor
,”
Anal. Chem.
71
,
5340
5347
(
1999
).
32.
Kolte
,
M. I.
and
P.
Szabo
, “
Capillary thinning of polymeric filaments
,”
J. Rheol.
43
,
609
625
(
1999
).
33.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworth-Heinemann
,
Boston
,
1988
).
34.
Li
,
J.
and
M. A.
Fontelos
, “
Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study
,”
Phys. Fluids
15
,
922
937
(
2003
).
35.
Liang
,
R. F.
and
M. R.
Mackley
, “
Rheological characterization of the time and strain dependence for polyisobutylene solutions
,”
J. Non-Newtonian Fluid Mech.
52
,
387
405
(
1994
).
36.
Link
,
D. R.
,
S. L.
Anna
,
D. A.
Weitz
, and
H. A.
Stone
, “
Geometrically mediated breakup of drops in microfluidic devices
,”
Phys. Rev. Lett.
92
,
054503
(
2004
).
37.
Link
,
D. R.
,
E.
Grasland-Mongrain
,
A.
Duri
,
F.
Sarrazin
,
Z. D.
Cheng
,
G.
Cristobal
,
M.
Marquez
, and
D. A.
Weitz
, “
Electric control of droplets in microfluidic devices
,”
Angew. Chem., Int. Ed.
45
,
2556
(
2006
).
38.
McKinley
,
G. H.
, “Visco-elasto-capillary thinning and break-up of complex fluids,” Rheology Reviews 2005 3, 1–48 (2005).
39.
McKinley
,
G. H.
and
T.
Sridhar
, “
Filament-stretching rheometry of complex fluids
,”
Annu. Rev. Fluid Mech.
34
,
375
415
(
2002
).
40.
McKinley
,
G. H.
and
A.
Tripathi
, “
How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer
,”
J. Rheol.
44
,
653
670
(
2000
).
41.
Ménétrier-Deremble
,
L.
and
P.
Tabeling
, “
Droplet breakup in microfluidic junctions of arbitrary angles
,”
Phys. Rev. E
74
,
035303
(
2006
).
42.
Middleman
,
S.
, “
Stability of a viscoelastic jet
,”
Chem. Eng. Sci.
20
,
1037
1040
(
1965
).
43.
Mun
,
R. P.
,
J. A.
Byars
, and
D. V.
Boger
, “
The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets
,”
J. Non-Newtonian Fluid Mech.
74
,
285
297
(
1998
).
44.
Oliveira
,
M. S. N.
and
G. H.
McKinley
, “
Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers
,”
Phys. Fluids
17
,
071704
(
2005
).
45.
Ottinger
,
H. C.
,
Stochastic Processes in Polymeric Liquids
(
Springer
,
Berlin
,
1996
).
46.
Prabhakar
,
R.
,
J. R.
Prakash
, and
T.
Sridhar
, “
Effect of configuration-dependent intramolecular hydrodynamic interaction on elastocapillary thinning and breakup of filaments of dilute polymer solutions
,”
J. Rheol.
50
,
925
947
(
2006
).
47.
Renardy
,
M.
, “
Some comments on the surface-tension driven breakup (or the lack of it) of viscoelastic jets
,”
J. Non-Newtonian Fluid Mech.
51
,
97
107
(
1994
).
48.
Renardy
,
M.
, “
A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets
,”
J. Non-Newtonian Fluid Mech.
59
,
267
282
(
1995
).
49.
Rodd
,
L. E.
,
T. P.
Scott
,
J. J.
Cooper-White
, and
G. H.
McKinley
, “
Capillary break-up rheometry of low-viscosity elastic fluids
,”
Appl. Rheol.
15
,
12
27
(
2005
).
50.
Schümmer
,
P.
and
K. H.
Tebel
, “
A new elongational rheometer for polymer solutions
,”
J. Non-Newtonian Fluid Mech.
12
,
331
347
(
1983
).
51.
Song
,
H.
,
M. R.
Bringer
,
J. D.
Tice
, and
R. F.
Ismagilov
, “
Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels
,”
Appl. Phys. Lett.
83
,
4664
4666
(
2003
).
52.
Steinhaus
,
B.
,
A. Q.
Shen
, and
R.
Sureshkumar
, “
Dynamics of viscoelastic fluid filaments in microfluidic devices
,”
Phys. Fluids
19
,
073103
(
2007
).
53.
Stelter
,
M.
,
G.
Brenn
,
A. L.
Yarin
,
R. P.
Singh
, and
F.
Durst
, “
Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer
,”
J. Rheol.
46
,
507
527
(
2002
).
54.
Thorsen
,
T.
,
R. W.
Roberts
,
F. H.
Arnold
, and
S. R.
Quake
, “
Dynamic pattern formation in a vesicle-generating microfluidic device
,”
Phys. Rev. Lett.
86
,
4163
4166
(
2001
).
55.
Tice
,
J. D.
,
H.
Song
,
A. D.
Lyon
, and
R. F.
Ismagilov
, “
Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers
,”
Langmuir
19
,
9127
9133
(
2003
).
56.
Tirtaatmadja
,
V.
,
G. H.
McKinley
, and
J. J.
Cooper-White
, “
Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration
,”
Phys. Fluids
18
,
043101
(
2006
).
57.
Tripathi
,
A.
,
P.
Whittingstall
, and
G. H.
McKinley
, “
Using filament stretching rheometry to predict strand formation and ‘processability’ in adhesives and other non-Newtonian fluids
,”
Rheol. Acta
39
,
321
337
(
2000
).
58.
Wagner
,
C.
,
Y.
Amarouchene
,
D.
Bonn
, and
J.
Eggers
, “
Droplet detachment and satellite bead formation in viscoelastic fluids
,”
Phys. Rev. Lett.
95
,
164504
(
2005
).
59.
Whitesides
,
G. M.
and
A. D.
Stroock
, “
Flexible methods for microfluidics
,”
Phys. Today
54
,
42
48
(
2001
).
You do not currently have access to this content.