This paper reports recent experimental findings and rheological modeling on chemically treated single-walled carbon nanotubes (CNTs) suspended within an epoxy resin. When a CNT suspension was subject to a steady shear flow, it exhibited a shear-thinning characteristic, which was subsequently modeled by a Fokker–Planck (FP) based orientation model. The model assumes that the shear flow aligns CNT in the flow direction, but there are events such as Brownian motion and tube–tube interaction trying to randomize the orientation. In the FP orientation model, randomizing events were modeled with an appropriate rotary diffusion coefficient (Dr) and the shear-thinning behavior was explained in terms of progressive alignment of CNTs toward the shear direction. In terms of linear viscoelasticity (LVE), small-amplitude oscillatory measurements revealed mild elasticity for semidilute treated CNT suspensions. The exact origin for this elasticity is not clear and both tube–tube interaction and bending/stretching of CNTs have been proposed by other authors as possible origins. It is, however, clear from the current modeling that the experimental evolution of storage modulus (G) cannot be described using a single-mode Maxwell model or simple Brownian rod modeling. In this paper, experimental LVE data of the treated CNT suspensions were fitted using the FP orientation model with an “effective diffusion coefficient” term and an empirical relation was subsequently identified for the effective diffusion term. Intuitively, chemical treatment has created a weakly interconnected network of CNT and it is believed that the mild elasticity originated from this weak network as well as other randomizing events (Brownian motion and tube–tube hydrodynamic interaction). Finally, step strain experiments confirmed the presence of a weak network at small strains, which at large strains was found to be destroyed. Incorporation of a strain softening factor allowed for the formulation of a self-consistent FP based orientation model describing both the steady shear and LVE responses of treated CNT suspensions.

1.
Advani
,
S. G.
and
Ch. L.
Tucker
, “
Closure approximations for three-dimensional structure tensors
,”
J. Rheol.
34
,
367
386
(
1990
).
32.
Advani
S. G.
(ed.),
Flow and Rheology in Polymer Composites Manufacturing
(
Elsevier
,
New York
,
1994
).
2.
Ajayan
,
P. M.
,
O.
Stephan
,
C.
Colliex
, and
C.
Trauth
, “
Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite
,”
Science
265
,
1212
1215
(
1994
).
3.
Amari
,
T.
and
K.
Watanabe
, “
Stress relaxation of carbon black-linseed oil suspensions
,”
J. Soc. Rheol., Jpn.
8
,
80
83
(
1980
).
4.
Ammar
,
A.
and
F.
Chinesta
, “
A particle strategy for solving the Fokker–Planck equation governing the fibre orientation distribution in steady recirculating flows involving short fibre suspensions
,”
Lectures Notes on Computational Science and Engineering
(
Springer
,
New York
,
2005
).
5.
Ammar
,
A.
,
B.
Mokdad
,
F.
Chinesta
, and
R.
Keunings
, “
A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids
,”
J. Non-Newtonian Fluid Mech.
139
,
153
176
(
2006
a).
6.
Ammar
,
A.
,
D.
Ryckelynck
,
F.
Chinesta
, and
R.
Keunings
, “
On the reduction of kinetic theory models related to finitely extensible dumbbells
,”
J. Non-Newtonian Fluid Mech.
134
,
136
147
(
2006
b).
7.
Banerjee
,
S.
,
M. G. C.
Kahn
, and
S. S.
Wong
, “
Rational chemical strategies for carbon nanotube functionalization
,”
Chem.-Eur. J.
9
,
1898
1908
(
2003
).
8.
Batchelor
,
G. K.
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
570
(
1970
).
9.
Batchelor
,
G. K.
, “
The stress generated in a nondilute suspension of elongated particles by pure straining motion
,”
J. Fluid Mech.
46
,
813
829
(
1971
).
10.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Kinetic Theory
(
Wiley
,
New York
,
1977
), Vol.
2
.
11.
Bower
,
C.
,
M. R.
Mackley
,
B. A. S.
Smeulders
,
D.
Barker
, and
J.
Hayes
, “
The rheology, processing, and microstructure of complex fluids
,” in
Modern Aspects of Colloid Dispersions
, edited by
R. H.
Ottewill
and
A. R.
Rennie
(
Kluwer
,
Netherlands
,
1998
).
12.
Calvert
,
P.
, “
Nanotube composites: A recipe for strength
,”
Nature (London)
399
,
210
211
(
1999
).
13.
Carter
,
L. F.
, “
A study of the rheology of suspensions of rod-shaped particles in a Navier–Stokes liquid
,” Ph.D. dissertation,
University of Michigan
, Ann Arbor,
1967
.
15.
Chan
,
C. J.
and
E. M.
Terentjev
, “
Nonequilibrium statistical mechanics of liquid crystals: Relaxation, viscosity and elasticity
,”
J. Phys. A: Math. Theor.
40
,
R103
R148
(
2007
).
16.
Chaubal
,
C. V.
,
A.
Srinivasan
,
O.
Egecioglu
, and
L. G.
Leal
, “
Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems
,”
J. Non-Newtonian Fluid Mech.
70
,
125
154
(
1997
).
17.
Chauviere
,
C.
and
A.
Lozinski
, “
Simulation of dilute polymer solutions using a Fokker–Planck equation
,”
Comput. Fluids
33
,
687
696
(
2004
).
18.
Chinesta
,
F.
,
G.
Chaidron
, and
A.
Poitou
, “
On the solution of the Fokker–Planck equation in steady recirculating flows involving short fibre suspensions
,”
J. Non-Newtonian Fluid Mech.
113
,
97
125
(
2003
).
19.
Collins
,
P. G.
,
K.
Bradley
,
M.
Ishigami
, and
A.
Zettl
, “
Extreme oxygen sensitivity of electronic properties of carbon nanotubes
,”
Science
287
,
1801
1804
(
2000
).
20.
de Heer
,
W. A.
,
A.
Chatelain
, and
D.
Ugarte
, “
A carbon nanotube field-emission electron source
,”
Science
270
,
1179
1180
(
1995
).
21.
Dinsmore
,
A. D.
,
V.
Prasad
,
I. Y.
Wong
, and
D. A.
Weitz
, “
Microscopic structure and elasticity of weakly aggregated colloidal gels
,”
Phys. Rev. Lett.
96
,
185502
(
2006
).
22.
Doi
,
M.
and
S. F.
Edwards
,
The Theory of Polymer Dynamic
(
Clarendon
,
Oxford
,
1986
).
23.
Donald
,
A. M.
,
A. H.
Windle
, and
S.
Hanna
,
Liquid Crystalline Polymers
(
Cambridge University Press
,
Cambridge
,
2006
).
24.
Dresselhaus
,
M. S.
and
H.
Dai
, “
Carbon nanotubes: Continued innovations and challenges
,”
MRS Bull.
29
,
237
243
(
2004
).
25.
Duggal
,
R.
and
M.
Pasquali
, “
Dynamics of individual single-walled carbon nanotubes in water by real-time visualization
,”
Phys. Rev. Lett.
96
,
246104
(
2006
).
26.
Dupret
,
F.
and
V.
Verleye
, “
Modeling the flow of fibre suspensions in narrow gaps
,” in
Advances in the Flow and Rheology of Non-Newtonian Fluids
, edited by
D. A.
Siginer
,
D.
De Kee
, and
R. P.
Chabra
,
Rheology Series
(
Elsevier
,
New York
,
1999
), p.
1347
1398
.
27.
Dyke
,
C. A.
and
J. M.
Tour
, “
Unbundled and highly functionalized carbon nanotubes from aqueous reactions
,”
Nano Lett.
3
,
1215
1218
(
2003
).
28.
Dyke
,
C. A.
and
J. M.
Tour
, “
Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization
,”
Chem.-Eur. J.
10
,
812
817
(
2004
).
29.
Ericson
,
L. M.
,
H.
Fan
,
H.
Peng
,
V. A.
Davis
,
W.
Zhou
,
J.
Sulpizio
,
Y.
Wang
,
R.
Booker
,
J.
Vavro
,
C.
Guthy
,
A.
Nicholas
,
G.
Parra-Vasquez
,
M. J.
Kim
,
S.
Ramesh
,
R. K.
Saini
,
C.
Kittrell
,
G.
Lavin
,
H.
Schmidt
,
W. W.
Adams
,
W. E.
Billups
,
M.
Pasquali
,
W. F.
Hwang
,
R. H.
Hauge
,
J. E.
Fischer
, and
R. E.
Smalley
, “
Macroscopic, neat, single-walled carbon nanotube fibers
,”
Science
305
,
1447
1450
(
2004
).
30.
Fan
,
Z.
and
S. G.
Advani
, “
Characterization of orientation state of carbon nanotubes in shear flows
,”
Polymer
46
,
5232
5240
(
2005
).
31.
Fan
,
Z.
and
S. G.
Advani
, “
Rheology of multiwall carbon nanotube suspensions
,”
J. Rheol.
51
,
585
604
(
2007
).
33.
Folgar
,
F.
and
C. L.
Tucker
 III
, “
Orientation behaviour of fibers in concentrated suspensions
,”
J. Reinf. Plast. Compos.
3
,
98
119
(
1984
).
34.
Forest
,
M. G.
and
Q.
Wang
, “
Hydrodynamic theories for mixtures of polymers and rodlike liquid crystalline polymers
,”
Phys. Rev. E
72
,
041805
(
2005
).
35.
Fry
,
D.
,
B.
Langhorst
,
H.
Kim
,
E.
Grulke
,
H.
Wang
, and
E. K.
Hobbie
, “
Anisotropy of sheared carbon-nanotube suspensions
,”
Phys. Rev. Lett.
95
,
038304
(
2005
).
36.
Ganani
,
E.
and
R. L.
Powell
, “
Rheological properties of rodlike particles in a Newtonian and non-Newtonian fluid
,”
J. Rheol.
30
,
995
1013
(
1986
).
37.
Grmela
,
M.
, “
Stress tensor in fiber suspensions
,”
Phys. Lett. A
372
,
4267
(
2008
).
38.
Guskey
,
S. M.
and
H. H.
Winter
, “
Transient shear behavior of a thermotropic liquid crystalline polymer in the nematic state
,”
J. Rheol.
35
,
1191
1207
(
1991
).
39.
Hinch
,
E. J.
and
L. G.
Leal
, “
The effect of Brownian motion on the rheological properties of a suspension of nonspherical particles
,”
J. Fluid Mech.
52
,
683
712
(
1972
).
40.
Hinch
,
E. J.
and
L. G.
Leal
, “
Constitutive equations in suspension mechanics. Part I
,”
J. Fluid Mech.
71
,
481
495
(
1975
).
41.
Hinch
,
E. J.
and
L. G.
Leal
, “
Constitutive equations in suspension mechanics. Part II
,”
J. Fluid Mech.
76
,
187
208
(
1976
).
42.
Hough
,
L. A.
,
M. F.
Islam
,
P. A.
Janmey
, and
A. G.
Yodh
, “
Viscoelasticity of single wall carbon nanotube suspensions
,”
Phys. Rev. Lett.
93
,
168102
(
2004
).
43.
Huang
,
Y. Y.
,
S. V.
Ahir
, and
E. M.
Terentjev
, “
Dispersion rheology of carbon nanotubes in a polymer matrix
,”
Phys. Rev. B
73
,
125422
(
2006
).
44.
Iijima
,
S.
, “
Helical microtubules of graphitic carbon
,”
Nature (London)
354
,
56
(
1991
).
45.
Jeffery
,
G. B.
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
102
,
161
179
(
1922
).
46.
Keunings
,
R.
, in
Rheology Reviews
, edited by
D. M.
Binding
and
K.
Walters
(
British Society of Rheology
,
Aberystwyth
,
2004
), pp.
67
98
.
47.
Kinloch
,
I. A.
,
S. A.
Roberts
, and
A. H.
Windle
, “
A rheological study of concentrated aqueous nanotube dispersions
,”
Polymer
43
,
7483
7491
(
2002
).
48.
Kong
,
J.
,
N.
Franklin
,
C.
Zhou
,
S.
Peng
,
K.
Cho
, and
H.
Dai
, “
Nanotube molecular wires as chemical sensors
,”
Science
287
,
622
625
(
2000
).
50.
Kordás
,
K.
,
T.
Mustonen
,
G.
Tóth
,
H.
Jantunen
,
M.
Lajunen
,
C.
Soldano
,
S.
Talapatra
,
S.
Kar
,
R.
Vajtai
, and
P. M.
Ajayan
, “
Inkjet printing of electrically conductive patterns of carbon nanotubes
,”
Small
2
,
1021
1025
(
2006
).
51.
Kozlov
,
M. E.
,
R. C.
Capps
,
W. M.
Sampson
,
V. H.
Ebron
,
J. P.
Ferraris
, and
R. H.
Baughman
, “
Spinning solid and hollow polymer-free carbon nanotube fibers
,”
Adv. Mater. (Weinheim, Ger.)
17
,
614
617
(
2005
).
52.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
), pp.
261
355
.
54.
Laso
,
M.
,
L. M.
Muneta
,
V.
Müller
,
A.
Alcazar
,
F.
Chinesta
, and
A.
Ammar
, in
Multiscale Modeling of Polymer Properties
, edited by
E. A.
Perpète
and
M.
Laso
(
Elsevier
,
The Netherlands
,
2006
), pp.
359
402
.
55.
Lozinski
,
A.
and
C.
Chauviere
, “
A fast solver for Fokker–Planck equation applied to viscoelastic flows calculations: 2D FENE model
,”
J. Comput. Phys.
189
,
607
625
(
2003
).
56.
Ma
,
A. W. K.
,
F.
Chinesta
,
A.
Ammar
, and
M. R.
Mackley
, “
Rheological modeling of carbon nanotube aggregate suspensions
,”
J. Rheol.
52
,
1311
1330
(
2008
a).
57.
Ma
,
A. W. K.
,
F.
Chinesta
, and
M. R.
Mackley
, in
Science and Applications of Carbon Nanotubes
, edited by
M.
Chipara
(
Blackwell
,
USA
,
2008
b).
58.
Ma
,
W. K. A.
,
F.
Chinesta
,
T.
Tuladhar
, and
M. R.
Mackley
, “
Filament stretching of carbon nanotube suspensions
,”
Rheol. Acta
47
,
447
457
(
2008
c).
59.
Mackley
,
M. R.
,
S.
Wannaborworn
,
P.
Gao
, and
F.
Zhao
, “
The optical microscopy of sheared liquids using a newly developed optical stage
,”
J. Microsc.
69
,
25
27
(
1999
).
61.
Mewis
,
J.
and
C.
Meire
, “
Yielding in weakly flocculated systems
,” in
Advances in Rheology: Fluids
, edited by
B.
Mena
,
A.
García-Rejón
, and
C.
Rangel-Nafaille
(
Elsevier
,
New York
,
1984
), Vol.
2
.
62.
Mours
,
M.
and
H. H.
Winter
, “
Relaxation patterns of nearly critical gels
,”
Macromolecules
29
,
7221
7229
(
1996
).
63.
Öttinger
,
H. C.
and
M.
Laso
, “
Smart polymers in finite element calculation
,” in
Theoretical and Applied Rheology
, edited by
P.
Moldenaers
and
R.
Keunings
, Proceedings of the XIth International Congress on Rheology, Brussels, pp.
286
288
(
1992
).
64.
Petrie
,
C. J. S.
, “
The rheology of fibre suspensions
,”
J. Non-Newtonian Fluid Mech.
87
,
369
402
(
1999
).
65.
Pittman
,
J. F. T.
and
J.
Bayram
, “
Extensional flow of polydispersed fibre suspensions in free-falling liquid jets
,”
Int. J. Multiphase Flow
16
,
545
559
(
1990
).
66.
Prager
,
S.
, “
Stress-strain relations in a suspension of dumbbells
,”
J. Rheol.
1
,
53
62
(
1957
).
67.
Rahatekar
,
S. S.
,
K. K. K.
Koziol
,
S. A.
Butler
,
J. A.
Elliott
,
M. S. P.
Shaffer
,
M. R.
Mackley
, and
A. H.
Windle
, “
Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes
,”
J. Rheol.
50
,
599
610
(
2006
).
68.
Rinzler
,
A. G.
,
J. H.
Hafner
,
P.
Nikolaev
,
P.
Nordlander
,
D. T.
Colbert
,
R. E.
Smalley
,
L.
Lou
,
S. G.
Kim
, and
D.
Tománek
, “
Unraveling nanotubes: Field emission from an atomic wire
,”
Science
269
,
1550
1553
(
1995
).
69.
Safadi
,
B.
,
R.
Andrews
, and
E. A.
Grulke
, “
Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films
,”
J. Appl. Polym. Sci.
84
,
2660
2669
(
2002
).
70.
Saito
,
S.
, “
Carbon nanotubes for next-generation electronics devices
,”
Science
278
,
77
78
(
1997
).
71.
Sandler
,
J.
,
M. S. P.
Shaffer
,
T.
Prasse
,
W.
Bauhofer
,
K.
Schulte
, and
A. H.
Windle
, “
Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties
,”
Polymer
40
,
5967
5971
(
1999
).
72.
Shaffer
,
M. S. P.
,
X.
Fan
, and
A. H.
Windle
, “
Dispersion and packing of carbon nanotubes
,”
Carbon
36
,
1603
1612
(
1998
).
73.
Shaqfeh
,
E. S. G.
and
G. H.
Fredricksen
, “
The hydrodynamic stress in a suspension of rods
,”
Phys. Fluids A
2
,
7
24
(
1990
).
74.
Song
,
Y. K.
and
J. R.
Youn
, “
Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites
,”
Carbon
43
,
1378
1385
(
2005
).
75.
Tans
,
S. J.
,
A. R. M.
Verschueren
, and
C.
Dekker
, “
Room-temperature transistor based on a single carbon nanotube
,”
Nature (London)
393
,
49
52
(
1998
).
76.
Vigolo
,
B.
,
A.
Pénicaud
,
C.
Coulon
,
C.
Sauder
,
R.
Pailler
,
C.
Journet
,
P.
Bernier
, and
P.
Poulin
, “
Macroscopic fibers and ribbons of oriented carbon nanotubes
,”
Science
290
,
1331
1334
(
2000
).
77.
Wagner
,
M. H.
, “
Analysis of time-dependent nonlinear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt
,”
Rheol. Acta
15
,
136
142
(
1976
).
78.
Winter
,
H. H.
, “
Soft polymeric materials near the transition from liquid to solid state
,”
Korea-Aust. Rheol. J.
11
,
275
278
(
1999
).
79.
Xu
,
J.
,
S.
Chatterjee
,
K. W.
Koelling
,
Y.
Wang
, and
S. E.
Bechtel
, “
Shear and extensional rheology of carbon nanofibers suspensions
,”
Rheol. Acta
44
,
537
562
(
2005
).
You do not currently have access to this content.