The second normal stress difference N2 experienced by non-Newtonian fluids flowing in a pipe may give rise to secondary flows in the transverse direction. As a result, one component tends to encapsulate the other in stratified flows. In multilayer coextrusion, such secondary flows tend to distort the interface and affect layer uniformity. This paper presents numerical simulations of the elastically driven encapsulation in two-component stratified viscoelastic fluids. The simulations are based on a phase-field theoretical model and use finite elements with adaptive meshing to resolve the moving interfaces. The results suggest two mechanisms for elastic encapsulation: One due to the mismatch of N2 between the components and the other due to noncircular geometry of the cross section. In circular pipes, the more elastic fluid tends to protrude into the other component in the center of the pipe and become encapsulated. This produces the curtate cycloid interface shape commonly seen in experiments. If the cross section is noncircular, both the geometric effect and the elastic stratification are at work, and the interfacial motion is determined by the competition of these two mechanisms. This understanding provides an explanation for the anomalous encapsulation of the less elastic component by the more elastic one observed in multilayer coextrusion.

1.
Anderson
,
P. D.
,
J.
Dooley
, and
E. H.
Meijer
, “
Viscoelastic effects in multilayer polymer extrusion
,”
Appl. Rheol.
16
,
198
205
(
2006
).
2.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Vol. 1. Fluid Mechanics
(
Wiley
, New York,
1987
).
3.
Debbaut
,
B.
,
T.
Avalosse
,
J.
Dooley
, and
K.
Hughes
, “
On the development of secondary motions in straight channels induced by the second normal stress difference: Experiments and simulations
,”
J. Non-Newtonian Fluid Mech.
69
,
255
271
(
1997
).
4.
Debbaut
,
B.
, and
J.
Dooley
, “
Secondary motions in straight and tapered channels: Experiments and three-dimensional finite element simulation with a multimode differential viscoelastic model
,”
J. Rheol.
43
(
6
),
1525
1545
(
1999
).
5.
Dooley
,
J.
, “
Viscoelastic flow effects in multi-layer polymer coextrusion
,” Ph.D. thesis,
Eindhoven University of Technology
, Eindhoven, the Netherlands (
2002
).
6.
Dooley
,
J.
,
K. S.
Hyun
, and
K.
Hughes
, “
An experimental study on the effect of polymer viscoelasticity on layer rearrangement in coextruded structures
,”
Polym. Eng. Sci.
38
(
7
),
1060
1071
(
1998
).
7.
Dooley
,
J.
, and
L.
Rudolph
, “
Viscous and elastic effects in polymer coextrusion
,”
J. Plast. Film Sheeting
19
(
2
),
111
122
(
2003
).
8.
Elemans
,
P. H. M.
,
J. M. H.
Janssen
, and
H. E. H.
Meijer
, “
The measurement of interfacial tension in polymer/polymer systems: The breaking thread method
,”
J. Rheol.
34
,
1311
1325
(
1990
).
9.
Everage
,
A. E.
, “
Theory of stratified bicomponent flow of polymer melts. I. Equilibrium Newtonian tube flow
,”
Trans. Soc. Rheol.
17
(
4
),
626
646
(
1973
).
10.
Everage
,
A. E.
, “
Theory of stratified bicomponent flow of polymer melts. II. Interface motion in transient flow
,”
Trans. Soc. Rheol.
19
(
4
),
509
522
(
1975
).
11.
Feng
,
J. J.
,
C.
Liu
,
J.
Shen
, and
P.
Yue
, “
An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: Advantages and challenges
,” in
Modeling of Soft Matter
,
IMA Volumes in Mathematics and its Applications
, edited by
M.-C. T.
Calderer
and
E.
Terentjev
(
Springer
, New York,
2005
), pp.
1
26
.
12.
Freitag
,
L. A.
, and
C.
Ollivier-Gooch
, “
Tetrahedral mesh improvement using swapping and smoothing
,”
Int. J. Numer. Methods Eng.
40
,
3979
4002
(
1997
).
13.
Giesekus
,
H.
, “
A simple constitutive equation for polymeric fluids based on the concept of configuration-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
14.
Han
,
C. D.
, “
A study of bicomponent coextrusion of molten polymers
,”
J. Appl. Polym. Sci.
17
,
1289
1303
(
1973
).
15.
Han
,
C. D.
,
Multiphase Flow in Polymer Processing
(
Academic
, New York,
1981
).
16.
Jacqmin
,
D.
, “
Contact-line dynamics of a diffuse fluid interface
,”
J. Fluid Mech.
402
,
57
88
(
2000
).
17.
Joseph
,
D. D.
, “
Lubricated pipelining
,”
Powder Technol.
94
,
211
215
(
1997
).
18.
Joseph
,
D. D.
, and
Y. Y.
Renardy
,
Fundamentals of Two-Fluid Dynamics. Part II: Lubricated Transport, Drops and Miscible Liquids
(
Springer-Verlag
, New York,
1993
).
19.
Karagiannis
,
A.
,
A. N.
Hrymak
, and
J.
Vlachopoulos
, “
Three-dimensional studies on bicomponent extrusion
,”
Rheol. Acta
29
,
71
87
(
1990
).
20.
Khan
,
A. A.
, and
C. D.
Han
, “
On the interface deformation in the stratified two-phase flow of viscoelastic fluids
,”
Trans. Soc. Rheol.
20
(
4
),
595
621
(
1976
).
21.
Khatavkar
,
V. V.
,
P. D.
Anderson
, and
H. E. H.
Meijer
, “
Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model
,”
J. Fluid Mech.
572
,
367
387
(
2007
).
22.
Khomami
,
B.
, and
M. M.
Ranjbaran
, “
Experimental studies of interfacial instabilities in multilayer pressure-driven flow of polymeric melts
,”
Rheol. Acta
36
,
345
366
(
1997
).
23.
Khomami
,
B.
, and
K. C.
Su
, “
An experimental/theoretical investigation of interfacial instabilities in superposed pressure-driven channel flow of Newtonian and well characterized viscoelastic fluids. Part I: linear stability and encapsulation effects
,”
J. Non-Newtonian Fluid Mech.
91
,
59
84
(
2000
).
24.
Lee
,
B. L.
, and
J. L.
White
, “
An experimental study of rheological properties of polymer melts in laminar shear flow and of interface deformation and its mechanisms in two-phase stratified flow
,”
Trans. Soc. Rheol.
18
(
3
),
467
492
(
1974
).
25.
MacLean
,
D. L.
, “
A theoretical analysis of bicomponent flow and the problem of interface shape
,”
Trans. Soc. Rheol.
17
(
3
),
385
399
(
1973
).
26.
Minagawa
,
N.
, and
J. L.
White
, “
Co-extrusion of unfilled and TiO2-filled polyethylene: Influence of viscosity and die cross-section on interface shape
,”
Polym. Eng. Sci.
15
,
825
830
(
1975
).
27.
Southern
,
J. H.
, and
R. L.
Ballman
, “
Additional observations on stratified bicomponent flow of polymer melts in a tube
,”
J. Polym. Sci., Polym. Phys. Ed.
13
,
863
869
(
1975
).
28.
Sunwoo
,
K. B.
,
S. J.
Park
,
S. J.
Lee
,
K. H.
Ahn
, and
S. J.
Lee
, “
Numerical simulation of three-dimensional viscoelastic flow using the open boundary condition method in coextrusion process
,”
J. Non-Newtonian Fluid Mech.
99
,
125
144
(
2001
).
29.
Sunwoo
,
K. B.
,
S. J.
Park
,
S. J.
Lee
, and
K. H.
Ahn
, “
Three-dimensional viscoelastic simulation of coextrusion process: Comparison with experimental data
,”
Rheol. Acta
41
,
144
153
(
2002
).
30.
Takase
,
M.
,
S.
Kihara
, and
K.
Funatsu
, “
Three-dimensional viscoelastic numerical analysis of the encapsulation phenomena in coextrusion
,”
Rheol. Acta
37
,
624
634
(
1998
).
31.
Tanoue
,
S.
,
T.
Naganawa
, and
Y.
Iemoto
, “
Quasi-three-dimensional simulation of viscoelastic flow through a straight channel with a square cross section
,”
J. Soc. Rheol., Jpn.
34
(
2
),
105
113
(
2006
).
32.
Tirtaatmadja
,
V.
, and
T.
Sridhar
, “
Comparison of constitutive equations for polymer solutions in uniaxial extension
,”
J. Rheol.
39
,
1133
1160
(
1995
).
33.
Torres
,
A.
,
A. N.
Hrymak
,
J.
Vlachopoulos
,
J.
Dooley
, and
B. T.
Hilton
, “
Boundary conditions for contact lines in coextrusion flows
,”
Rheol. Acta
32
,
513
525
(
1993
).
34.
White
,
J. L.
, and
B.-L.
Lee
, “
Theory of interface distortion in stratified two-phase flow
,”
Trans. Soc. Rheol.
19
(
3
),
457
479
(
1975
).
35.
White
,
J. L.
,
R. C.
Ufford
,
K. R.
Dharod
, and
R. L.
Price
, “
Experimental and theoretical study of the extrusion of two-phase molten polymer systems
,”
J. Appl. Polym. Sci.
16
,
1313
1330
(
1972
).
36.
Wilson
,
G. M.
, and
B.
Khomami
, “
An experimental investigation of interfacial instabilities in multilayer flow of viscoelastic fluids. II. Elastic and nonlinear effects in incompatible polymer systems
,”
J. Rheol.
37
(
2
),
315
339
(
1993
).
37.
Xue
,
S.-C.
,
N.
Phan-Thien
, and
R. I.
Tanner
, “
Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method
,”
J. Non-Newtonian Fluid Mech.
59
,
191
213
(
1995
).
38.
Yue
,
P.
,
J.
Dooley
, and
J. J.
Feng
, “
A general criterion for viscoelastic secondary flow in pipes of noncircular cross section
,”
J. Rheol.
52
,
315
332
(
2008
).
39.
Yue
,
P.
,
J. J.
Feng
,
C.
Liu
, and
J.
Shen
, “
A diffuse-interface method for simulating two-phase flows of complex fluids
,”
J. Fluid Mech.
515
,
293
317
(
2004
).
40.
Yue
,
P.
,
C.
Zhou
, and
J. J.
Feng
, “
A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids
,”
Phys. Fluids
18
,
102102
(
2006a
).
41.
Yue
,
P.
,
C.
Zhou
,
J. J.
Feng
,
C. F.
Ollivier-Gooch
, and
H. H.
Hu
, “
Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing
,”
J. Comput. Phys.
219
,
47
67
(
2006b
).
42.
Zhou
,
C.
,
P.
Yue
, and
J. J.
Feng
, “
Formation of simple and compound drops in microfluidic devices
,”
Phys. Fluids
18
,
092105
(
2006
).
43.
Zhou
,
C.
,
P.
Yue
, and
J. J.
Feng
, “
The rise of Newtonian drops in a nematic liquid crystal
,”
J. Fluid Mech.
593
,
385
404
(
2007
).
You do not currently have access to this content.