Particle tracking microrheology is used to study the effect of a constant applied shear during gelation of aqueous gellan gum with a monovalent salt. Shear modifies the gellan gum hydrogel microstructure and the bulk rheological properties of the system, depending on whether shear is applied during gelation or afterwards. The microstructure determines the linear elastic response of the gel, as well as the critical strain and stress above which the response becomes nonlinear. Bulk oscillatory rheology is used to study microstructured gellan gum hydrogels at different polymer and salt concentrations. The similarity between our system and concentrated microgel particle suspensions can be explained by considering the microstructured gellan system to be composed of microgel particles whose size is set by the applied shear stress magnitude during gelation. Polymer concentration and ionic strength control the individual microgel particles’ elastic properties. We also find the gellan system exhibits an isoenergetic transition from the jammed to un-jammed state when sheared, similar to jammed colloidal systems [C. G. Robertson and X. R. Wang, “Isoenergetic jamming transition in particle-filled systems,” Phys. Rev. Lett.95, 075703 (2005)].

1.
Adams
,
S.
,
W. J.
Frith
, and
J. R.
Stokes
, “
Influence of particle modulus on the rheological properties of agar microgel suspensions
,”
J. Rheol.
48
,
1195
1213
(
2004
).
2.
Altmann
,
N.
,
J. J.
Cooper-White
,
D. E.
Dunstan
, and
J. R.
Stokes
, “
Strong through to weak ‘sheared’ gels
,”
J. Non-Newtonian Fluid Mech.
124
,
129
136
(
2004
).
3.
Crocker
,
J. C.
, and
D. G.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
310
(
1996
).
4.
Ketz
,
R. J.
,
R. K.
Prud-homme
, and
W. W.
Graessley
, “
Rheology of concentrated microgel solutions
,”
Rheol. Acta
27
,
531
539
(
1988
).
5.
Liu
,
J.
,
M. L.
Gardel
,
K.
Kroy
,
E.
Frey
,
B. D.
Hoffman
,
J. C.
Crocker
,
A. R.
Bausch
, and
D. A.
Weitz
, “
Microrheology Probes Length Scale Dependent rheology
,”
Phys. Rev. Lett.
96
,
118104
(
2006
).
6.
Mason
,
T. G.
, “
Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation
,”
Rheol. Acta
39
,
371
378
(
2000
).
7.
Miyazaki
,
K.
,
H. M.
Wyss
,
D. A.
Weitz
, and
D. R.
Reichman
, “
Nonlinear viscoelasticity of metastable complex fluids
,”
Europhys. Lett.
75
,
915
921
(
2006
).
8.
Morris
,
E. R.
,
R. K.
Richardson
, and
L. E.
Whittaker
, “
Rheology and gelation of deacylated gellan polysaccharide with Na+ as the sole counterion
,”
Prog. Colloid Polym. Sci.
114
,
109
115
(
1999
).
9.
Norton
,
I. T.
,
D. A.
Jarvis
, and
T. J.
Foster
, “
A molecular model for the formation and properties of fluid gels
,”
Int. J. Biol. Macromol.
26
,
255
261
(
1999
).
10.
Ogawa
,
E.
,
R.
Takahashi
,
H.
Yajima
, and
K.
Nishinari
, “
Thermally induced coil-to-helix transition of sodium gellan gum with different molar masses in aqueous salt solutions
,”
Biopolymers
79
,
207
217
(
2005
).
11.
Ohtsuka
,
A.
, and
T.
Watanabe
, “
The network structure of gellan gum hydrogels based on the structural parameters by the analysis of the restricted diffusion of water
,”
Carbohydr. Polym.
30
,
135
140
(
1996
).
12.
Oppong
,
F. K.
,
L.
Rubatat
,
B. J.
Frisken
,
A. E.
Bailey
, and
J. R.
de Bruyn
, “
Microrheology and structure of a yield-stress polymer gel
,”
Phys. Rev. E
73
,
041405
(
2006
).
13.
Robertson
,
C. G.
, and
X. R.
Wang
, “
Isoenergetic jamming transition in particle-filled systems
,”
Phys. Rev. Lett.
95
,
075703
(
2005
).
14.
Shih
,
W. H.
,
W. Y.
Shih
,
S.
Kim
,
J.
Liu
, and
I. A.
Aksay
, “
Scaling behavior of the elastic properties of colloidal gels
,”
Phys. Rev. A
42
,
4772
4779
(
1990
).
15.
Sworn
,
G.
,
G. R.
Sanderson
, and
W.
Gibson
, “
Gellan gum fluid gels
,”
Food Hydrocolloids
9
,
265
271
(
1995
).
16.
Valentine
,
M. T.
,
P. D.
Kaplan
,
D.
Thota
,
J. C.
Crocker
,
T.
Gisler
,
R. K.
Prud-homme
,
M.
Beck
, and
D. A.
Weitz
, “
Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking
,”
Phys. Rev. E
64
,
061506
(
2001
).
17.
Wang
,
X. R.
, and
C. G.
Robertson
, “
Strain-induced nonlinearity of filled rubbers
,”
Phys. Rev. E
72
,
031406
(
2005
).
You do not currently have access to this content.