Extensional flows and magnetic fields induce similar steady alignment responses when applied to liquid crystals (LCs), liquid crystal polymers (LCPs) and nematic (rigid rod or platelet) suspensions. This observation is explained for LCs by a classical analogy, expressed as a symmetry, between hydrodynamic and magnetic fields in the Leslie-Ericksen theory [de Gennes and Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993); Chandrasekhar, Liquid Crystals (Cambridge University Press, London, 1992)]. Our purpose here is to extend this analogy: first, to LCPs and nematic suspensions where an excluded volume potential couples either to a linear flow [Hess, Z. Naturforsch. A31a, 10341037 (1976); Doi and Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)] or to a magnetic field [Bhandar and Wiest, J. Colloid Interface Sci.257, 371382 (2003)]; and second, to the strong coupling of excluded volume interactions, planar linear flows, and a coplanar magnetic field. The general symmetries reveal parameter redundancies in the Doi-Hess kinetic theory, leading to a reduced model with significant computational savings. That is, a rotational planar linear LCP (or nematic suspension) flow under an imposed coplanar magnetic field is reducible to a simple shear flow coupled with a transversely imposed magnetic field and negative anisotropy through an orthogonal transformation; whereas a magnetic field coupled linear, irrotational flow corresponds to a tri-directional elongation. We illustrate these results with a second-moment tensor model to predict how a variable strength, coplanar magnetic field may be used to alter or control flow-induced responses of LCPs or nematic suspensions. The illustrations are for sheared dynamic attractors (tumbling, kayaking and chaotic), extension-induced steady states, and four roll mill flows.

1.
Bhandar
,
A. S.
, and
J. M.
Wiest
, “
Mesoscale constitutive modeling of magnetic dispersions
,”
J. Colloid Interface Sci.
257
,
371
382
(
2003
).
2.
Bentley
,
B. J.
, and
L. G.
Leal
, “
A computer controlled four-roll mill for investigation of particle and rope dynamics in two-dimensional linear shear flows
,”
J. Fluid Mech.
167
,
219
240
(
1986
).
3.
Bird
,
B. R.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987
), Vol.
1
.
4.
Chandrasekhar
,
S.
,
Liquid Crystals
(
Cambridge University Press
,
London
,
1992
).
5.
Constantin
,
P.
, and
J.
Vukadinovic
, “
Note on the number of steady states for a two-dimensional Smoluchowski equation
,”
Nonlinearity
18
,
441
443
(
2005
).
6.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
7.
deGennes
,
P. G.
, and
J.
Prost
,
The Physics of Liquid Crystals
(
Oxford University Press
,
New York
,
1993
).
8.
Faraoni
,
V.
,
M.
Grosso
,
S.
Crescitelli
, and
P. L.
Maffetone
, “
The rigid-rod model for nematic polymers: An analysis of the shear flow problem
,”
J. Rheol.
43
,
829
843
(
1999
).
9.
Feng
,
J.
, and
L. G.
Leal
, “
Numerical simulation of the flow of dilute polymer solutions in a four-roll mill
,”
J. Non-Newtonian Fluid Mech.
72
,
187
218
(
1997
).
10.
Forest
,
M. G.
,
Q.
Wang
, and
S. E.
Bechtel
, “
1 dimensional isothermal spinning models for liquid crystalline polymer fibers
,”
J. Rheol.
41
,
821
850
(
1997
).
11.
Forest
,
M. G.
,
Q.
Wang
, and
H.
Zhou
, “
Homogeneous pattern selection and director instabilities of nematic liquid crystal polymers induced by elongational flows
,”
Phys. Fluids
12
,
490
498
(
2000
).
12.
Forest
,
M. G.
,
Q.
Wang
, and
H.
Zhou
, “
On the flow-phase diagram for discotic liquid crystals in uniaxial extension and compression
,”
Liq. Cryst.
5
,
717
721
(
2000
).
13.
Forest
,
M. G.
, and
Q.
Wang
, “
Monodomain response of finite-aspect-ratio macromolecules in shear and related linear flows
,”
Rheol. Acta
42
,
20
46
(
2003
).
14.
Forest
,
M. G.
,
Q.
Wang
,
R.
Zhou
, and
E.
Choate
, “
Monodomain response of arbitrary aspect ratio nematic polymers in general linear planar flows
,”
J. Non-Newtonian Fluid Mech.
118
,
17
31
(
2004a
).
15.
Forest
,
M. G.
,
R.
Zhou
, and
Q.
Wang
, “
Chaotic boundaries of nematic polymers in mixed shear and extensional flows
,”
Phys. Rev. Lett.
93
,
088301
(
2004b
).
16.
Forest
,
M. G.
,
Q.
Wang
, and
R.
Zhou
, “
The weak shear phase diagram for nematic polymers
,”
Rheol. Acta
43
,
17
37
(
2004c
).
17.
Forest
,
M. G.
,
Q.
Wang
, and
R.
Zhou
, “
The flow-phase diagram of Doi-Hess theory for sheared nematic polymers II: Finite shear rates
,”
Rheol. Acta
44
,
80
93
(
2004d
).
18.
Forest
,
M. G.
,
S.
Sircar
,
Q.
Wang
, and
R.
Zhou
, “
Monodomain dynamics for rigid rod and platelet suspensions in strongly coupled coplanar linear flow and magnetic fields: Kinetic simulations
,”
Phys. Fluids
18
,
103102
(
2006
).
19.
Fuller
,
G. G.
,
L. G.
Leal
, “
Flow birefringence of concentrated polymer solutions in two-dimensional flows
,”
J. Polym. Sci., Polym. Phys. Ed.
19
,
557
587
(
1981
).
20.
Gopinath
,
A.
,
L.
Mahadevan
, and
R. C.
Armstrong
, “
Transitions to nematic states in homogeneous suspensions of high aspect ratio magnetic rods
,”
Phys. Fluids
18
,
028102
(
2006
).
21.
Grosso
,
M.
,
R.
Keunings
,
S.
Crescitelli
, and
P. L.
Maffetone
, “
Prediction of chaotic dynamics of sheared liquid creystalline polymers
,”
Phys. Rev. Lett.
86
,
3184
3187
(
2001
).
22.
Hess
,
S.
, “
Fokker-Planck-equation approach to flow alignment in liquid crystals
,”
Z. Naturforsch. A
31a
,
1034
1037
(
1976
).
23.
Isihara
,
A.
, “
The theory of anisotropic colloidal solutions
,”
J. Chem. Phys.
19
,
1142
1147
(
1951
).
24.
Jeffery
,
G. B.
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
102
,
161
179
(
1922
).
25.
Kuzuu
,
N.
, and
M.
Doi
, “
Constitutive equations for nematic liquid crystals under weak velocity gradients derived from a molecular kinetic equation
,”
J. Phys. Soc. Jpn.
52
,
3486
3494
(
1983
).
26.
Larson
,
R. G.
, and
H. C.
Ottinger
, “
Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid crystalline polymers
,”
Macromolecules
24
,
6270
6282
(
1991
).
27.
Onsager
,
L.
, “
The effects of shape on the interaction of colloidal particles
,”
Ann. N.Y. Acad. Sci.
51
,
627
659
(
1949
).
28.
Rey
,
A.
, “
Bifurcational analysis of the isotropic-nematic phase transition of rigid rod polymers subjected to biaxial stretching flow
,”
Macromol. Theory Simul.
4
,
857
872
(
1995
).
29.
Rey
,
A.
, “
Bifurcational analysis of the isotropic-discotic nematic phase transition in the presence of extensional flow
,”
Liq. Cryst.
19
,
325
331
(
1995b
).
30.
Rienacker
,
G.
,
M.
Kroger
, and
S.
Hess
, “
Chaotic and regular shear-induced orientation dynamics of nematic liquid crystals
,”
Physica A
315
,
537
568
(
2002
).
31.
Wang
,
Q.
, “
Comparative studies on closure approximations in flows of liquid crystal polymers. I Elongational flows
,”
J. Non-Newtonian Fluid Mech.
72
,
141
162
(
1997
).
32.
Wang
,
Q.
, “
A hydrodynamic theory of nematic liquid crystalline polymers of different configurations
,”
J. Chem. Phys.
116
,
9120
9136
(
2002
).
33.
Wang
,
Q.
,
S.
Sircar
, and
H.
Zhou
, “
Steady state solutions of the Smoluchowski equation for nematic polymers under imposed fields
,”
Commun. Math. Sci.
4
,
605
620
(
2005
).
You do not currently have access to this content.