We investigate active particle-tracking microrheology in a colloidal dispersion by Brownian dynamics simulations. A probe particle is dragged through the dispersion with an externally imposed force in order to access the nonlinear viscoelastic response of the medium. The probe’s motion is governed by a balance between the external force and the entropic “reactive” force of the dispersion resulting from the microstructural deformation. A “microviscosity” is defined by appealing to the Stokes drag on the probe and serves as a measure of the viscoelastic response. This microviscosity is a function of the Péclet number (Pe=FakT)—the ratio of “driven” (F) to diffusive (kTa) transport—as well as of the volume fraction of the force-free bath particles making up the colloidal dispersion. At low Pe—in the passive microrheology regime—the microviscosity can be directly related to the long-time self-diffusivity of the probe. As Pe increases, the microviscosity “force-thins” until another Newtonian plateau is reached at large Pe. Microviscosities for all Péclet numbers and volume fractions can be collapsed onto a single curve through a simple volume fraction scaling and equate well to predictions from dilute microrheology theory. The microviscosity is shown to compare well with traditional macrorheology results (theory and simulations).

1.
Allen
,
M. P.
, and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
, Oxford, UK,
1987
).
2.
Almog
,
Y.
, and
H.
Brenner
, “
Non-continuum anomalies in the apparent viscosity experienced by a test sphere moving through an otherwise quiescent suspension
,”
Phys. Fluids
9
,
16
22
(
1997
).
3.
Bausch
,
A. R.
,
F.
Ziemann
,
A. A.
Boulbitch
,
K.
Jacobson
, and
E.
Sackmann
, “
Local measurements of viscoelastic parameters of adherent cell membranes by magnetic bead microrheometry
,”
Biophys. J.
75
,
2038
2049
(
1998
).
4.
Bergenholtz
,
J.
,
J. F.
Brady
, and
M.
Vicic
, “
The non-Newtonian rheology of dilute colloidal suspensions
,”
J. Fluid Mech.
456
,
239
275
(
2002
).
5.
Brady
,
J. F.
, “
The long-time self-diffusivity in concentrated colloidal dispersions
,”
J. Fluid Mech.
272
,
109
133
(
1994
).
6.
Breedveld
,
V.
, and
D. J.
Pine
, “
Microrheology as a tool for high-throughput screening
,”
J. Mater. Sci.
38
,
4461
4470
(
2003
).
7.
Carpen
,
I. C.
, “
Studies of suspension behavior. I. Instabilities of non-Brownian suspensions. II. Microrheology of colloidal suspensions
,” PhD thesis,
California Institute of Technology
2005
).
8.
Crocker
,
J. C.
, “
Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres
,”
J. Chem. Phys.
106
,
2837
2840
(
1997
).
9.
Crocker
,
J. C.
,
M. T.
Valentine
,
E. R.
Weeks
,
T.
Gisler
,
P. D.
Kaplan
,
A. G.
Yodh
, and
D. A.
Weitz
, “
Two-point microrheology of inhomogeneous soft materials
,”
Phys. Rev. Lett.
85
(
4
),
888
891
(
2000
).
10.
Crocker
,
J. C.
,
J. A.
Matteo
,
A. D.
Dinsmore
, and
A. G.
Yodh
, “
Entropic attraction and repulsion in binary colloids probed with a line optical tweezer
,”
Phys. Rev. Lett.
82
,
4352
4355
(
1999
).
11.
Foss
,
D. R.
, and
J. F.
Brady
, “
Brownian Dynamics simulation of hard-sphere colloidal dispersions
,”
J. Rheol.
44
(
3
),
629
651
(
2000
).
12.
Freundlich
,
H.
, and
W.
Seifriz
, “
Über die elastizität von sollen und gelen
,”
Z. Phys. Chem., Stoechiom. Verwandtschaftsl.
104
,
233
261
(
1922
).
13.
Gisler
,
T.
, and
D. A.
Weitz
, “
Scaling of the microrheology of semidilute F-actin solutions
,”
Phys. Rev. Lett.
82
,
1606
1609
(
1999
).
14.
Guilford
,
W. H.
,
R. C.
Lantz
, and
R. W.
Gore
, “
Locomotive forces produced by single leukocytes in-vivo and in-vitro
,”
Am. J. Physiol.
37
,
C1308
C1312
(
1995
).
15.
Habdas
,
P.
,
D.
Schaar
,
A. C.
Levitt
, and
E. R.
Weeks
, “
Forced motion of a probe particle near the colloidal glass transition
,”
Europhys. Lett.
67
(
3
),
477
483
(
2004
).
16.
Helseth
,
L. E.
, and
T. M.
Fischer
, “
Fundamental limits of optical microrheology
,”
J. Colloid Interface Sci.
275
,
322
327
(
2004
).
17.
Heyes
,
D. M.
, and
J. R.
Melrose
, “
Brownian dynamics simulations of model hard-sphere suspensions
,”
J. Non-Newtonian Fluid Mech.
46
,
1
28
(
1993
).
18.
Khair
,
A. S.
, and
J. F.
Brady
, “
Single particle motion in colloidal dispersions
,” J. Fluid Mech. (in press).
19.
Lau
,
A. W. C.
,
B. D.
Hoffman
,
A.
Davies
,
J. C.
Crocker
, and
T. C.
Lubensky
, “
Microrheology, stress fluctuations, and active behavior of living cells
,”
Phys. Rev. Lett.
91
,
198101
(
2003
).
20.
MacKintosh
,
F. C.
, and
C. F.
Schmidt
, “
Microrheology
,”
Curr. Opin. Colloid Interface Sci.
4
,
300
307
(
1999
).
21.
Mason
,
T. G.
,
K.
Ganesan
,
J. H.
vanZanten
,
D.
Wirtz
, and
S. C.
Kuo
, “
Particle tracking microrheology of complex fluids
,”
Phys. Rev. Lett.
79
,
3282
3285
(
1997
).
22.
Rintoul
,
M. D.
, and
S.
Torquato
, “
Computer simulations of dense hard-sphere systems
,”
J. Chem. Phys.
105
,
9258
9265
(
1996
).
23.
Squires
,
T. M.
, and
J. F.
Brady
, “
A simple paradigm for active and nonlinear microrheology
,”
Phys. Fluids
17
(
7
)
073101
(
2005
).
24.
Van der Werff
,
J. C.
,
C. G.
de Kruif
,
C.
Blom
, and
J.
Mellema
, “
Linear viscoelastic behavior of dense hard-sphere dispersions
,”
Phys. Rev. A
39
(
2
),
795
807
(
1989
).
25.
Ziemann
,
F.
,
J.
Radler
, and
E.
Sackmann
, “
Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer
,”
Biophys. J.
66
,
2210
2216
(
1994
).
You do not currently have access to this content.