We use a new extensional rheology test fixture that has been developed for conventional torsional rheometers to measure the transient extensional stress growth in a number of different molten polyethylene samples including a linear low density polyethylene (Dow Affinity PL 1880), a low density polyethylene (Lupolen 1840H), and an ultrahigh molecular weight polyethylene (UHMWPE). The transient uniaxial extensional viscosity functions for the linear low density polyethylene (LLDPE) and low density polyethylene (LDPE) samples have both been reported previously in the literature using well-established instruments and this allows us to benchmark the performance of the new test fixture. Transient stress growth experiments are carried out over a range of Hencky strain rates from 0.003 to and the data show excellent agreement with the published material functions. At deformation rates greater than a true steady state extensional viscosity is not obtained in the LDPE samples due to the onset of necking failure inthe elongating strips of polymer; however, the limiting values of the transient extensional viscosity at the onset of sample failure agree well with previously published values for the steady state extensional viscosity. This apparent steady-state extensional viscosity first increases with deformation rate before ultimately decreasing as approximately . In addition we perform extensional step-strain measurements at small Hencky strains and demonstrate good agreement with the relaxation modulus obtained from shear rheometry. Extensional creep measurements are performed over a range of constant imposed tensile stresses and also agree well with the measured shear creep compliance. Finally, tensile stress relaxation experiments are carried out after a range of imposed Hencky strains. These tests demonstrate that following large extensional deformations the tensile stresses relax nonlinearly and also that, beyond a critical strain, the material is unstable to viscoelastic necking and rupture. Additional transient extensional stress growth measurements using highly entangled linear UHMWPE samples show greatly reduced strains to failure, that are in agreement with the predictions of the Considere theory.
Skip Nav Destination
Article navigation
Research Article|
May 01 2005
Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform
Martin Sentmanat;
Martin Sentmanat
Senkhar Technologies
, LLC, Akron, Ohio
Search for other works by this author on:
Benjamin N. Wang;
Benjamin N. Wang
Institute for Soldier Nanotechnology and Department of Chemical Engineering,
Massachusetts Institute of Technology
, Cambridge, Massachusetts 02139
Search for other works by this author on:
Gareth H. McKinley
Gareth H. McKinley
a)
Hatsopoulos Microfluids Laboratory and Institute for Soldier Nanotechnology, Department of Mechanical Engineering,
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Search for other works by this author on:
a)
Author to whom correspondence should be addressed; electronic mail: gareth@mit.edu
J. Rheol. 49, 585–606 (2005)
Article history
Received:
April 16 2004
Citation
Martin Sentmanat, Benjamin N. Wang, Gareth H. McKinley; Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. J. Rheol. 1 May 2005; 49 (3): 585–606. https://doi.org/10.1122/1.1896956
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00