We use a new extensional rheology test fixture that has been developed for conventional torsional rheometers to measure the transient extensional stress growth in a number of different molten polyethylene samples including a linear low density polyethylene (Dow Affinity PL 1880), a low density polyethylene (Lupolen 1840H), and an ultrahigh molecular weight polyethylene (UHMWPE). The transient uniaxial extensional viscosity functions for the linear low density polyethylene (LLDPE) and low density polyethylene (LDPE) samples have both been reported previously in the literature using well-established instruments and this allows us to benchmark the performance of the new test fixture. Transient stress growth experiments are carried out over a range of Hencky strain rates from 0.003 to 30s1 and the data show excellent agreement with the published material functions. At deformation rates greater than 0.3s1 a true steady state extensional viscosity is not obtained in the LDPE samples due to the onset of necking failure inthe elongating strips of polymer; however, the limiting values of the transient extensional viscosity at the onset of sample failure agree well with previously published values for the steady state extensional viscosity. This apparent steady-state extensional viscosity first increases with deformation rate before ultimately decreasing as approximately ε̇0.5. In addition we perform extensional step-strain measurements at small Hencky strains and demonstrate good agreement with the relaxation modulus obtained from shear rheometry. Extensional creep measurements are performed over a range of constant imposed tensile stresses and also agree well with the measured shear creep compliance. Finally, tensile stress relaxation experiments are carried out after a range of imposed Hencky strains. These tests demonstrate that following large extensional deformations the tensile stresses relax nonlinearly and also that, beyond a critical strain, the material is unstable to viscoelastic necking and rupture. Additional transient extensional stress growth measurements using highly entangled linear UHMWPE samples show greatly reduced strains to failure, that are in agreement with the predictions of the Considere theory.

1.
Anna
,
S. L.
,
G. H.
McKinley
,
D. A.
Nguyen
,
T.
Sridhar
,
S. J.
Muller
,
J.
Huang
, and
D. F.
James
, “
An inter-laboratory comparison of measurements from filament-stretching rheometers using common test fluids
,”
J. Rheol.
45
,
83
114
(
2001
).
2.
Arigo
,
M. T.
, and
G. H.
McKinley
, “
The effects of viscoelasticity on the transient motion of a sphere in a shear-thinning fluid
,”
J. Rheol.
,
41
,
103
128
(
1997
).
3.
Bach
,
A.
,
K.
Almdal
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Elongational viscosity of narrow molar mass distribution polystyrene
,”
Macromolecules
,
36
,
5174
5179
(
2003a
).
Bach
,
A.
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Extensional Viscosity for Polymer Melts Measured in the Filament Stretching Rheometer
,”
J. Rheol.
,
47
,
429
441
(
2003b
).
4.
Barroso
,
V. C.
, and
J. M.
Maia
, “
Evaluation by means of stress relaxation (after a step strain) experiments of the viscoelastic behavior of polymer melts in uniaxial extension
,”
Rheol. Acta
,
41
,
257
264
(
2002
).
5.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics
, 2nd ed., (
Wiley Interscience
, New York,
1987
).
6.
Connelly
,
R. W.
,
L. J.
Garfield
, and
G. H.
Pearson
, “
Local stretch history of a fixed-end-constant-length-polymer-melt stretching experiment
,”
J. Rheol.
23
,
651
662
(
1979
).
7.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. IV. Rheological properties
,”
J. Chem. Soc., Faraday Trans. 2
75
,
38
54
(
1978
).
8.
Gabriel
,
C.
,
J.
Kaschta
, and
H.
Münstedt
, “
Influence of molecular structure on rheological properties of polyethylenes. I. Creep recovery measurements in shear
,”
Rheol. Acta
37
,
7
20
(
1998
).
9.
Hachmann
,
P.
, and
J.
Meissner
, “
Rheometer for equibiaxial and planar elongations of polymer melts
,”
J. Rheol.
47
,
989
1010
(
2003
).
10.
Hassager
,
O.
,
M. I.
Kolte
, and
M.
Renardy
, “
Failure and nonfailure of fluid filaments in extension
,”
J. Non-Newtonian Fluid Mech.
76
,
137
152
(
1998
).
11.
Hutchinson
,
J. W.
, and
H.
Obrecht
, “
Tensile instabilities in strain-rate dependent materials
,”
Fracture 1977 (ICF4)
, Waterloo, Canada, 19–24 June
1977
, Vol.
1
, pp.
101
116
.
12.
James
,
D. F.
, and
K.
Walters
, “
A critical appraisal of available methods for the measurement of extensional properties of mobile systems
,” in
Techniques in Rheological Measurement
, edited by
A. A.
Collyer
(
Elsevier
, London,
1993
), pp.
33
53
.
13.
Joshi
,
Y. M.
, and
M. M.
Denn
, “
Failure and recovery of entangled polymer melts in elongational flow
,” in
Rheology Reviews 2004
, edited by
D. M.
Binding
and
K.
Walters
(
British Society of Rheology
, Aberystwyth,
2004
)
14.
Kraft
,
M.
,
J.
Meissner
, and
J.
Kaschta
, “
Linear viscoelastic characterization of polymer melts with long relaxation times
,”
Macromolecules
32
,
751
757
(
1999
).
15.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
,
Topics in Chemical Engineering
(
Oxford University Press
, New York,
1999
).
16.
Laun
,
H. M.
, and
H.
Münstedt
, “
Comparison of the elongational behavior of a polyethylene melt at constant stress and constant strain rate
,”
Rheol. Acta
15
,
517
524
(
1979
).
17.
Laun
,
H. M.
, and
H.
Schuch
, “
Transient elongational viscosities and drawability of polymer melts
,”
J. Rheol.
33
,
119
175
(
1989
).
18.
Laun
,
H. M.
, personal communication,
2003
.
19.
Macosko
,
C.
, and
J.
Lorntson
, “
The rheology of two blow-molding polyethylenes
,”
Annu. Tech. Conf.-Soc. Plast. Eng.
19
,
461
467
(
1973
).
20.
Malkin
,
A. Y.
, and
C. J.S.
Petrie
, “
Some conditions for rupture of polymeric liquids in extension
,”
J. Rheol.
41
,
1
25
(
1997
).
21.
Marrucci
,
G.
, and
G.
Ianniruberto
, “
Interchain pressure effect in extensional flows of entangled polymer melts
,”
Macromolecules
37
,
3934
3942
(
2004
).
22.
McKinley
,
G. H.
, “
Stretched to breaking point; Transient extensional rheology from the melt to the dilute solution;” Paper PL1, Society of Rheology annual meeting
, Lubbock, Texas; 13–17 January
2005
.
23.
McKinley
,
G. H.
, and
O.
Hassager
, “
The considère condition and rapid stretching of linear and branched polymer melts
,”
J. Rheol.
43
,
1195
1212
(
1999
).
24.
McKinley
,
G. H.
, and
T.
Sridhar
, “
Filament stretching rheometry of complex liquids
,”
Annu. Rev. Fluid Mech.
34
,
375
415
(
2002
).
25.
McLeish
,
T. C.B.
, and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: The Pom–Pom model
,”
J. Rheol.
42
,
81
110
(
1998
).
26.
Meissner
,
J.
, “
Experimental aspects in polymer melt elongational rheology
,”
Chem. Eng. Commun.
33
,
159
180
(
1985
).
27.
Meissner
,
J.
, and
J.
Hostettler
, “
A new elongational rheometer for polymer melts and other highly viscoelastic liquids
,”
Rheol. Acta
33
,
1
21
(
1994
).
29.
Münstedt
,
H.
, “
New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample
,”
J. Rheol.
24
,
847
867
(
1979
).
28.
Münstedt
,
H.
, and
H. M.
Laun
, “
Elongational behavior of a low density polyethylene melt. II. Transient behavior in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties
,”
Rheol. Acta
18
,
492
504
(
1979
).
30.
Münstedt
,
H.
, and
H. M.
Laun
, “
Elongational properties and molecular structure of polyethylene melts
,”
Rheol. Acta
20
,
211
221
(
1981
).
31.
Münstedt
,
H.
,
S.
Kurzbeck
, and
L.
Egersdörfer
, “
Influence of molecular structure on rheological properties of polyethylenes—Part II: Elongational behavior
,”
Rheol. Acta
37
,
21
29
(
1998
).
32.
Okamoto
,
M.
,
A.
Kojima
, and
T.
Kotaka
, “
Elongational flow and birefringence of low density polyethylene and its blends with ultrahigh molecular weight polyethylene
,”
Polymer
39
,
2149
2153
(
1998
).
33.
Padmanabhan
,
M.
,
L. J.
Kasehagen
, and
C.
Macosko
, “
Transient extensional viscosity from a rotational shear rheometer using fiber-windup technique
,”
J. Rheol.
40
,
473
481
(
1996
).
34.
Pavoor
,
P. V.
, “
Tribological and mechanical characterization of polyelectrolyte multilayer nanoassemblies
,”
MIT
Ph.D./CEP thesis,
2003
.
35.
Pearson
,
G. H.
, and
R. W.
Connelly
, “
The use of extensional rheometry to establish operating parameters for stretching processes
,”
J. Appl. Polym. Sci.
,
27
,
969
981
(
1982
).
47.
Rasmussen
,
H. K
,
J. K.
Nielsen
,
A.
Bach
, and
O.
Hassager
, “
Viscosity Overshoot in the Start-Up of Uniaxial Elongation of Low Density Polyethylene Melts
,”
J. Rheol.
,
49
,
369
381
(
2005
).
36.
Rauschenberger
,
V.
, and
H. M.
Laun
, “
A recursive model for rheotens tests
,”
J. Rheol.
41
,
719
737
(
1997
)
37.
Schulze
,
J. S.
,
T. P.
Lodge
,
C. W.
Macosko
,
J.
Hepperle
,
H.
Munstedt
,
H.
Bastian
,
D.
Ferri
,
D. J.
Groves
,
Y.-H.
Kim
,
M.
Lyon
,
T.
Schweizer
,
T.
Virkler
,
E.
Wassner
, and
W.
Zoetelief
, “
A comparison of extensional viscosity measurements from various RME rheometers
,”
Rheol. Acta
40
,
457
466
(
2001
).
38.
Schweizer
,
T.
, “
The uniaxial elongational rheometer RME—Six years of experience
,”
Rheol. Acta
39
,
428
443
(
2000
).
39.
Sentmanat
,
M. L.
, “
A novel device for characterizing polymer flows in uniaxial extension
,” ANTEC ’03, Soc. Plastics Engineers, Tech. Papers, 49, CD-ROM, New York,
2003a
.
40.
Sentmanat
,
M. L.
, “
Dual windup extensional rheometer
,” U.S. Patent No. 6,578,413 (
2003b
).
41.
Sentmanat
,
M. L.
, “
Miniature universal testing platform: From extensional melt rheology to solid-state deformation behavior
,”
Rheol. Acta
,
43
,
657
669
(
2004
).
42.
Sridhar
,
T.
, “
An overview of the project M1
,”
J. Non-Newtonian Fluid Mech.
35
,
85
92
(
1990
).
43.
Verbeeten
,
W. M. H.
,
G. W. M.
Peters
, and
F. P.T.
Baaijens
, “
Differential constitutive equations for polymer melts: The extended Pom–Pom model
,”
J. Rheol.
45
,
823
843
(
2001
).
44.
Wang
,
X.
,
Q.
Wu
, and
Z.
Qi
, “
Unusual rheology behavior of ultra high molecular weight polyethylene/kaolin composites prepared via polymerization-filling
,”
Polym. Int.
52
,
1078
1082
(
2003
).
45.
Wiest
,
J. M.
, “
A differential constitutive equation for polymer melts
,”
Rheol. Acta
28
,
4
12
(
1989
).
46.
Yao
,
M.
,
G. H.
McKinley
, and
B.
Debbaut
, “
Extensional deformation, stress relaxation and necking failure of viscoelastic filaments
,”
J. Non-Newtonian Fluid Mech.
,
79
,
469
501
(
1998
).
You do not currently have access to this content.