An efficient nonequilibrium Monte Carlo method using the Bond fluctuation model is used to simulate uniaxial and planar extension of dilute polymer solutions. The time scale is obtained from the stress relaxation of a fully stretched chain and can be related to the longest relaxation time of a real molecule, while the length scale is taken to be the statistical Kuhn segment length. The method leads to τ1∼N2.16 and D∼N−1.02 for a freely draining chain with an excluded volume constraint, where τ1,N, and D are the longest relaxation time, chain length, and diffusion coefficient, respectively. The finite extensibility of the bond causes extension thinning following the coil-stretch transition. The Monte Carlo predictions for the transient extension of isolated DNA molecules in a planar extensional flow agree reasonably well with published experimental measurements and Brownian dynamics simulations. “Molecular individualism” is observed in the unraveling of the polymer chain.

1.
Andrews
,
N. C.
,
A. J.
McHugh
, and
J. D.
Schieber
, “
Configuration biased Monte Carlo and Brownian dynamics simulations of semiflexible polymers in extensional flows
,”
Macromol. Theory Simul.
7
,
19
26
(
1998a
).
2.
Andrews
,
N. C.
,
A. J.
McHugh
, and
J. D.
Schieber
, “
Conformational and rheological dynamics of semiflexible macromolecules undergoing shear flow: A nonequilibrium Brownian dynamics study
,”
J. Rheol.
42
,
281
305
(
1998b
).
3.
Azuma
,
R.
, and
H.
Takayama
, “
Bond fluctuation method for a polymer undergoing gel electophoresis
,”
Phys. Rev. E
59
,
650
655
(
1999
).
4.
Baschnagel
,
J.
,
K.
Binder
,
P.
Doruker
,
A. A.
Gusev
,
O.
Hahn
,
K.
Kremer
,
W. L.
Mattice
,
F.
Müller-Plathe
,
M.
Murat
,
W.
Paul
,
S.
Santos
,
U. W.
Suter
, and
V.
Tries
, “
Bridging the gap between atomistic and coarse-grained models of polymers: Status and perspectives
,”
Adv. Polym. Sci.
152
,
41
156
(
2000
).
5.
Baschnagel
,
J.
, “
Scattering function in the framework of the idealized mode-coupling theory: A Monte Carlo study for polymer melts
,”
Phys. Rev. B
49
,
135
146
(
1994
).
6.
Bhandar
,
A. S.
, and
J. M.
Wiest
, “
Steady uniaxial elongational flows: Roles of intramolecular potentials
,”
Macromolecules
34
,
7113
7120
(
2001
).
7.
Binder, K., The Monte Carlo Simulation in Statistical Physics (Springer, Berlin, 1979).
8.
Binder, K., Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford, New York, 1995).
9.
Binder
,
K.
, and
W.
Paul
, “
Monte Carlo simulations of polymer dynamic: recent advances
,”
J. Polym. Sci., Part B: Polym. Phys.
35
,
1
31
(
1997
).
10.
Bird, R. B., C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 2nd ed. (Wiley, New York, 1987), Vol. 2.
11.
Bustamante
,
C.
,
J. F.
Marko
,
E. D.
Siggia
, and
S.
Smith
, “
Entropy elasticity of λ-phage DNA
,”
Science
265
,
1599
1600
(
1994
).
12.
Carmesin
,
I.
, and
K.
Kremer
, “
The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions
,”
Macromolecules
21
,
2819
2823
(
1988
).
13.
de Gennes
,
P. G.
, “
Molecular individualism
,”
Science
276
,
1999
2000
(
1997
).
14.
Deutsch
,
H. P.
, and
K.
Binder
, “
Interdiffusion and self-diffusion in polymer mixtures: A Monte Carlo study
,”
J. Chem. Phys.
94
,
2294
2304
(
1991
).
15.
Deutsch
,
H. P.
, and
R.
Dickman
, “
Equation of state for athermal lattice chains in a 3-D fluctuating bond model
,”
J. Chem. Phys.
93
,
8983
8990
(
1990
).
16.
Di Cecca
,
A.
, and
J. J.
Freire
, “
Monte Carlo simulation of star polymer systems with the bond fluctuation model
,”
Macromolecules
35
,
2851
2858
(
2002
).
17.
Doi, M., and S. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).
18.
Downey
,
J. P.
,
C. C.
Crabb
, and
J.
Kovac
, “
Dynamics of a face centered cubic lattice model for polymer chains
,”
Macromolecules
19
,
2202
2206
(
1986
).
19.
Doyle
,
P. S.
,
E. S. G.
Shaqfeh
, and
A. P.
Gast
, “
Dynamic simulation of freely draining flexible polymers in steady linear flows
,”
J. Fluid Mech.
334
,
251
291
(
1997
).
20.
Doyle
,
P. S.
,
E. S. G.
Shaqfeh
,
H. H.
McKinley
, and
S. H.
Spiegelberg
, “
Relaxation of dilut polymer solutions following extensional flow
,”
J. Non-Newtonian Fluid Mech.
76
,
79
110
(
1998
).
21.
Duering
,
E.
, and
Y.
Rabin
, “
Polymers in shear flow near repulsive boundaries
,”
Macromolecules
23
,
2232
2237
(
1990
).
22.
Duering
,
E.
, and
Y.
Rabin
, “
Polymers in plane Poiseuille flow: dynamic Monte Carlo simulation
,”
J. Rheol.
35
,
213
219
(
1991
).
23.
Fuller
,
G. G.
, and
L. G.
Leal
, “
Flow birefringence of dilute polymer-solutions in two-dimensional flows
,”
Rheol. Acta
19
,
580
600
(
1980
).
24.
Ghosh
,
I.
,
G. H.
McKinley
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Deficiencies of FENE dumbbell models in describing the rapid stretching of dilute polymer solutions
,”
J. Rheol.
45
,
721
758
(
2001
).
25.
Gleiman
,
S. S.
, and
J. R.
Dorgan
, “
Monte Carlo simulation of homopolymer melts in plane Poiseuille flow
,”
J. Chem. Phys.
112
,
6073
6083
(
2000
).
26.
Grassia
,
P.
, and
E. J.
Hinch
, “
Computer simulations of polymer relaxation via Brownian motion
,”
J. Fluid Mech.
308
,
255
288
(
1996
).
27.
Gupta
,
R. K.
,
D. A.
Nguyen
, and
T.
Sridhar
, “
Extensional viscosity of dilute polystyrene solutions: Effect of concentration and molecular weight
,”
Phys. Fluids
12
,
1296
1318
(
2000
).
28.
Haire
,
H. R.
,
T. J.
Carver
, and
A. H.
Windle
, “
A Monte Carlo lattice model for chain diffusion in dense polymer systems and its interlocking with molecular dynamics simulation
,”
Comput. Theor. Polym. Sci.
11
,
17
28
(
2001
).
29.
Hölzl
,
Th.
,
M.
Wittkop
,
S.
Kreitmeier
, and
D.
Göritz
, “
Uniaxial deformation of bridging polymer systems: A Monte Carlo study
,”
J. Chem. Phys.
106
,
7792
7801
(
1997
).
30.
Huh
,
J.
, and
A. C.
Balazs
, “
Behavior of confined telechelic chains under shear
,”
J. Chem. Phys.
113
,
2025
2031
(
2000
).
31.
Huitema
,
H. E. A.
, and
J. P.
van der Eerden
, “
Can Monte Carlo simulation describe dynamics? A test on Lennard-Jones systems
,”
J. Chem. Phys.
110
,
3267
3274
(
1999
).
32.
Hur
,
J. S.
,
E. S. G.
Shaqfeh
, and
R. G.
Larson
, “
Brownian dynamics simulations of single DNA molecules in shear flow
,”
J. Rheol.
44
,
713
742
(
2000
).
33.
Jendrejack
,
R. M.
,
J. J.
de Pablo
, and
M. D.
Graham
, “
Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions
,”
J. Chem. Phys.
116
,
7752
7759
(
2002
).
34.
Keller
,
A.
, and
J. A.
Odell
, “
The extensibility of macromolecules in solution—A new focus for macromolecular science
,”
Colloid Polym. Sci.
263
,
181
201
(
1985
).
35.
Kreer
,
T.
,
J.
Baschnagel
,
M.
Müller
, and
K.
Binder
, “
Monte Carlo simulation of long chain polymer melts: crossover from Rouse to reptation dynamics
,”
Macromolecules
34
,
1105
1117
(
2001
).
36.
Kremer
,
K.
, and
F.
Müller-Plathe
, “
Multiscale simulation in polymer science
,”
Mol. Simul.
28
,
729
750
(
2002
).
37.
Lai
,
P. Y.
, and
K.
Binder
, “
Grafted polymer layers under shear: A Monte Carlo simulation
,”
J. Chem. Phys.
98
,
2366
2375
(
1993
).
38.
Lai
,
P. Y.
, “
Computer simulation of end-grafted polymer chains
,”
Physica A
205
,
191
197
(
1994
).
39.
Lai
,
P. Y.
, and
C. Y.
Lai
, “
Polymer brush under strong shear
,”
Phys. Rev. E
54
,
6958
6961
(
1996
).
40.
Lai
,
C. Y.
, and
P. Y.
Lai
, “
Grafted polymers under strong shear: scaling and nonequilibrium Monte Carlo studies
,”
Macromol. Theory Simul.
6
,
835
854
(
1997
).
41.
Larson, R. G., Constitutive Equations for Polymer Melts and Solutions (Butterworths, Boston, 1988).
42.
Larson
,
R. G.
, “
The role of molecular folds and ‘pre-conditioning’ in the unraveling of polymer molecules during extensional flow
,”
J. Non-Newtonian Fluid Mech.
94
,
37
45
(
2000
).
43.
Larson
,
R. G.
,
H.
Hu
,
D. E.
Smith
, and
S.
Chu
, “
Brownian dynamics simulations of a DNA molecule in an extensional flow field
,”
J. Rheol.
43
,
267
304
(
1999
).
44.
Larson
,
R. G.
,
T. T.
Perkins
,
D. E.
Smith
, and
S.
Chu
, “
Hydrodynamics of a DNA molecule in a flow field
,”
Phys. Rev. E
55
,
1794
1797
(
1997
).
45.
Levi
,
A. C.
, and
M.
Kotrla
, “
Theory and simulation of crystal growth
,”
J. Phys.: Condens. Matter
9
,
299
344
(
1997
).
46.
Li
,
L.
,
R. G.
Larson
, and
T.
Sridhar
, “
Brownian dynamics simulations of dilute polystyrene solutions
,”
J. Rheol.
44
,
291
322
(
2000
).
47.
Marko
,
J. F.
, and
E. D.
Siggia
, “
Stretching DNA
,”
Macromolecules
28
,
8759
8770
(
1994
).
48.
Mavrantzas
,
V. G.
, and
D. N.
Theodorou
, “
Atomistic simulation of polymer melt elasticity: Calculation of the free energy of an oriented polymer melt
,”
Macromolecules
31
,
6310
6332
(
1998
).
49.
Mavrantzas
,
V. G.
, and
D. N.
Theodorou
, “
Atomistic simulation of the birefringence of uniaxially stretched polyethylene melts
,”
Comput. Theor. Polym. Sci.
10
,
1
13
(
2000a
).
50.
Mavrantzas
,
V. G.
, and
D. N.
Theodorou
, “
Atomistic Monte Carlo simulation of steady-state uniaxial elongational flow of long-chain polyethylene melts: Dependence of the melt degree of orientation on stress, molecular length and elongational strain rate
,”
Macromol. Theory Simul.
9
,
500
515
(
2000b
).
51.
Metropolis
,
N.
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
52.
Miao
,
L.
,
H.
Guo
, and
M. J.
Zuckermann
, “
Conformation of polymer brushes under shear: chain tilting and stretching
,”
Macromolecules
29
,
2289
2297
(
1996
).
53.
Milchev
,
A.
,
J. P.
Wittmer
, and
D. P.
Landau
, “
A Monte-Carlo study of equilibrium polymers in a shear flow
,”
Eur. Phys. J. B
12
,
241
251
(
1999
).
54.
Müller
,
M.
, and
W.
Paul
, “
Measuring the chemical potential of polymer solutions and melts in computer simulation
,”
J. Chem. Phys.
100
,
719
724
(
1994
).
55.
Müller-Plathe
,
F.
, “
Scale-hopping in computer simulation of polymers
,”
Soft Materials
1
,
1
31
(
2003
).
56.
Paul
,
W.
,
K.
Binder
,
D. W.
Heermann
, and
K.
Kremer
, “
Crossover scaling in semidilute polymer-solutions—A Monte Carlo test
,”
J. Phys. II
1
,
37
60
(
1991a
).
57.
Paul
,
W.
,
K.
Binder
,
D. W.
Heermann
, and
K.
Kremer
, “
Dynamics of polymer solutions and melts. Reptation predictions and scaling of relaxation times
,”
J. Chem. Phys.
95
,
7726
7740
(
1991b
).
58.
Paul
,
W.
, and
N.
Pistoor
, “
A mapping of realistic onto abstract polymer models and an application to two bisphenol polycarbonates
,”
Macromolecules
27
,
1249
1255
(
1994
).
59.
Rouault
,
Y.
, and
V.
Borisov
, “
Comb-branched polymers: Monte Carlo simulation and scaling
,”
Macromolecules
29
,
2605
2611
(
1996
).
60.
Schulz
,
M.
,
R. G.
Winkler
, and
P.
Reineker
, “
Reptation of polymer chains: a combined Monte Carlo and molecular-dynamics study
,”
Phys. Rev. B
48
,
581
584
(
1993
).
61.
Scott
,
B.
, and
S.
Grezegorz
, “
Computer simulation of three-arm star polymers
,”
Macromol. Theory Simul.
9
,
14
19
(
2000
).
62.
Smith
,
D. E.
, and
S.
Chu
, “
Response of flexible polymers to a sudden elongational flow
,”
Science
281
,
1335
1340
(
1998
).
63.
Smith
,
D. E.
,
T.
Perkins
, and
S.
Chu
, “
Dynamical scaling of DNA diffusion coefficients
,”
Macromolecules
29
,
1372
1340
(
1996
).
64.
Tan
,
S.
, “
Monte-Carlo simulation of polymers in shear flow
,”
Polymer
40
,
695
700
(
1999
).
65.
Termonia
,
Y.
, “
Molecular modeling of structure development upon quenching of a polymer solution
,”
Macromolecules
30
,
5367
5371
(
1997
).
66.
Termonia
,
Y.
, “
Coil-stretch transition in deformation flows
,”
J. Polym. Sci., Part B: Polym. Phys.
38
,
2422
2428
(
2000
).
67.
Tries
,
V.
,
W.
Paul
,
J.
Baschnagel
, and
K.
Binder
, “
Modeling polyethylene with the bond fluctuation model
,”
J. Chem. Phys.
106
,
738
748
(
1997
).
68.
Wacha
,
M.
, and
S.
Kreitmeier
, “
Monte Carlo studies on the deformation behavior of entangled polymer chains
,”
Macromol. Theory Simul.
11
,
438
444
(
2002
).
69.
Xu
,
G. Q.
,
J. D.
Ding
, and
Y. L.
Yang
, “
Monte Carlo simulation of self-avoiding lattice chain subject to simple shear flow. I. Model and simulation algorithm
,”
J. Chem. Phys.
107
,
4070
4084
(
1997
).
70.
Xu
,
G. Q.
,
J. D.
Ding
, and
Y. L.
Yang
, “
Monte Carlo simulation of self-avoiding lattice chains subject to simple shear flow: Part II. Three-dimensional results and comparison with experiments
,”
Polymer
41
,
3289
3295
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.