We numerically investigate the stability problem of the injection molding process. It was indicated by Bulters and Schepens [Bulters and Schepens (2000)] that surface defects of injection molded products may be attributed to a flow instability near the free surface during the filling stage of the mold. We examine the stability of this flow using the extended Pom–Pom constitutive equations. The model allows for controlling the degree of strain hardening of the fluids without affecting the shear behavior considerably. To study the linear stability characteristics of the injection molding process we use a transient finite element algorithm that is able to efficiently handle time dependent viscoelastic flow problems and includes a free surface description to take perturbations of the computational domain into account. It is shown that the fountain flow, which is a model flow for the injection molding process, is subject to a viscoelastic instability. If the various rheologies are compared, we observe that the onset of unstable flow can be delayed by increasing the degree of strain hardening of the fluid (by increasing the number of arms in the Pom–Pom model). The most unstable disturbance which is obtained after exponential growth is a swirling flow near the fountain flow surface which is consistent with the experimental findings.

1.
Blackwell
,
R. J.
,
T. C. B.
McLeish
, and
O. G.
Harlen
, “
Molecular drag-strain coupling in branched polymer melts
,”
J. Rheol.
44
,
121
136
(
2000
).
2.
Bochev
,
P. B.
, and
M. D.
Gunzburger
, “
Finite element methods of least-squares type
,”
SIAM Rev.
40
,
789
837
(
1998
).
3.
Bogaerds
,
A. C. B.
,
A. M.
Grillet
,
G. W. M.
Peters
, and
F. P. T.
Baaijens
, “
Stability analysis of polymer shear flows using the eXtended Pom–Pom constitutive equations
,”
J. Non-Newtonian Fluid Mech.
108
,
187
208
(
2002
).
4.
Bogaerds
,
A. C. B.
,
M. A.
Hulsen
,
G. W. M.
Peters
, and
F. P. T.
Baaijens
, “
Time dependent finite element analysis of the linear stability of viscoelastic flows with interfaces
,”
J. Non-Newtonian Fluid Mech.
116
,
33
54
(
2003
).
5.
Brooks
,
A. N.
, and
T. J. R.
Hughes
, “
Streamline upwind/Petrov Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations
,”
Comput. Methods Appl. Mech. Eng.
32
,
199
259
(
1982
).
6.
Brown
,
R. A.
,
M. J.
Szady
,
P. J.
Northey
, and
R. C.
Armstrong
, “
On the numerical stability of mixed finite-element methods for viscoelastic flows governed by differential constitutive equations
,”
Theor. Comput. Fluid Dyn.
5
,
77
106
(
1993
).
7.
Bulters, M., and A. Schepens, “The origin of the surface defect ‘slip-stick’ on injection moulded products,” in Proceedings of the 16th Annual Meeting of the Polymer Processing Society, Shanghai, China, 2000. Paper IL 3-2, pp. 144–145.
8.
Carvalho
,
M. S.
, and
L. E.
Scriven
, “
Three-dimensional stability analysis of free surface flows: Application to forward deformable roll coating
,”
J. Comput. Phys.
151
,
534
562
(
1999
).
9.
Chang, M. C. O., “On the study of surface defects in the injection molding of rubber-modified thermoplastics,” in ANTEC ’94, 1994, pp. 360–367.
10.
Clemeur
,
N.
,
R. P. G.
Rutgers
, and
B.
Debbaut
, “
On the evaluation of some differential formulations for the pom–pom constitutive model
,”
Rheol. Acta
42
,
217
231
(
2003
).
11.
Glowinski, R., “Finite element methods for the numerical simulation of incompressible viscous flow: Introduction to the control of the Navier–Stokes equations,” in Vortex Dynamics and Vortex Mechanics, of Lectures in Applied Mathematics, Vol. 28, edited by C. R. Anderson and C. Greengard (American Mathematical Society, Providence, 1991), pp. 219–301.
12.
Glowinski
,
R.
, and
O.
Pironneau
, “
Finite element methods for Navier–Stokes equations
,”
Annu. Rev. Fluid Mech.
24
,
167
204
(
1992
).
13.
Graham
,
R. S.
,
T. C. B.
McLeish
, and
O. G.
Harlen
, “
Using the Pom–Pom equations to analyze polymer melts in exponential shear
,”
J. Rheol.
45
,
275
290
(
2001
).
14.
Grillet
,
A. M.
,
A. C. B.
Bogaerds
,
G. W. M.
Peters
, and
F. P. T.
Baaijens
, “
Stability analysis of constitutive equations for polymer melts in viscometric flows
,”
J. Non-Newtonian Fluid Mech.
103
,
221
250
(
2002a
).
15.
Grillet
,
A. M.
,
A. C. B.
Bogaerds
,
G. W. M.
Peters
,
M.
Bulters
, and
F. P. T.
Baaijens
, “
Numerical analysis of flow mark surface defects in injection molding flow
,”
J. Rheol.
46
,
651
670
(
2002b
).
16.
Grillet
,
A. M.
,
B.
Yang
,
B.
Khomami
, and
E. S. G.
Shaqfeh
, “
Modeling of viscoelastic lid driven cavity flow using finite element simulations
,”
J. Non-Newtonian Fluid Mech.
88
,
99
131
(
1999
).
17.
Guénette
,
R.
, and
M.
Fortin
, “
A new mixed finite element method for computing viscoelastic flows
,”
J. Non-Newtonian Fluid Mech.
60
,
27
52
(
1995
).
18.
Hamada
,
H.
, and
H.
Tsunasawa
, “
Correlation between flow mark and internal structure of thin PC/ABS blend injection moldings
,”
J. Appl. Polym. Sci.
60
,
353
362
(
1996
).
19.
Hinch
,
E. J.
, “
The flow of an Oldroyd fluid around a sharp corner
,”
J. Non-Newtonian Fluid Mech.
50
,
161
171
(
1993
).
20.
Hobbs
,
S. Y.
, “
The development of flow instabilities during the injection molding of multicomponent resins
,”
Polym. Eng. Sci.
32
,
1489
1494
(
1996
).
21.
Inkson
,
N. J.
,
T. C. B.
McLeish
,
O. G.
Harlen
, and
D. J.
Groves
, “
Predicting low density polyethylene melt rheology in elongational and shear flows with ‘Pom–Pom’ constitutive equations
,”
J. Rheol.
43
,
873
896
(
1999
).
22.
Keiller
,
R. A.
, “
Numerical instability of time-dependent flows
,”
J. Non-Newtonian Fluid Mech.
43
,
229
246
(
1992
).
23.
Mathieu
,
L.
,
L.
Stockmann
,
J. M.
Haudin
,
B.
Monasse
,
M.
Vincent
,
J. M.
Barthez
,
J. Y.
Charmeau
,
V.
Durand
,
J. P.
Gazonnet
, and
D. C.
Roux
, “
Flow marks in injection molding of PP; Influence of processing conditions and formation in fountain flow
,”
Int. Polym. Process.
16
,
401
411
(
2001
).
24.
Mavridis
,
H.
,
A. N.
Hrymak
, and
J.
Vlachopoulos
, “
Finite element simulation of fountain flow in injection molding
,”
Polym. Eng. Sci.
26
,
449
454
(
1986
).
25.
Mavridis
,
H.
,
A. N.
Hrymak
, and
J.
Vlachopoulos
, “
The effect of fountain flow on molecular orientation in injection molding
,”
J. Rheol.
32
,
639
663
(
1988
).
26.
McLeish
,
T. C. B.
, and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: The Pom–Pom polymer
,”
J. Rheol.
42
,
81
110
(
1998
).
27.
Pearson, J. R. A., Mechanics of Polymer Processing (Elsevier Science, New York, 1985).
28.
Sato
,
T.
, and
S. M.
Richardson
, “
Numerical simulation of the fountain flow problem for viscoelastic liquids
,”
Polym. Eng. Sci.
35
,
805
812
(
1995
).
29.
Shen
,
S.-F.
, “
Grapplings with the simulation of non-Newtonian flows in polymer processing
,”
Int. J. Numer. Methods Eng.
34
,
701
723
(
1992
).
30.
Smith
,
M. D.
,
R. C.
Armstrong
,
R. A.
Brown
, and
R.
Sureshkumar
, “
Finite element analysis of stability of two-dimensional viscoelastic flows to three-dimensional perturbations
,”
J. Non-Newtonian Fluid Mech.
93
,
203
244
(
2000
).
31.
Sureshkumar
,
R.
,
M. D.
Smith
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Linear stability and dynamics of viscoelastic flows using time-dependent numerical simulations
,”
J. Non-Newtonian Fluid Mech.
82
,
57
104
(
1999
).
32.
Swartjes, F. H. M., “Stress induced crystallization in elongational flow,” Ph.D. thesis, Eindhoven University of Technology, November 2001.
33.
Szady
,
M. J.
,
T. R.
Salomon
,
A. W.
Liu
,
D. E.
Bornside
,
R. C.
Armstrong
, and
R. A.
Brown
, “
A new mixed finite element method for viscoelastic flows governed by differential constitutive equations
,”
J. Non-Newtonian Fluid Mech.
59
,
215
243
(
1995
).
34.
Verbeeten
,
W. M. H.
,
G. W. M.
Peters
, and
F. P. T.
Baaijens
, “
Differential constitutive equations for polymer melts: The Extended Pom–Pom model
,”
J. Rheol.
45
,
823
844
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.