The melt rheology of ultrahigh molecular weight polymeric materials characterized by a narrow molecular weight distribution has been analyzed. Ultrahigh molecular weight polyethylene obtained from a metallocene catalyst shows a well-developed “plateau” modulus in a range of angular frequency of more than 3 decades. The characteristic value of the plateau modulus (∼2 MPa) is in close agreement with those reported for a model high molecular weight monodisperse polyethylene. From this value one can determine a characteristic molecular weight between entanglements of 1200 g mol−1. The molecular weight dependency of different, experimentally based relaxation times obtained from the linear viscoelastic response exhibits an exponent power law close to 3.0 for these materials. This seems to contradict the 3.4 dependence observed in the usual molecular weight range, which is based on the chain contour length fluctuation approach, but is in agreement with the latest reptation-based models. These models predict a crossover from the 3.4 to a 3.0 exponent for very long chains as used here at a constant critical value of the molecular weight Mr close to 100Mc(200Mc when using the well accepted relationship Mc=2Me). This predicted crossover is independent of the polymer’s chemical composition. However, combining results from our experiments with results from literature shows that the experimental values of Mr extend from 15Mc for polystyrene, 25Mc for polyisobutilene, 100Mc for polybutadyene to 220Mc for polyethylene. These results are not predicted by molecular models and demand for new theoretical considerations of chain dynamics, in which the chemical structure is, most probably, a key factor that should be taken into account. It should be noticed that the influence of the molecular weight distribution on the differences observed is not understood. Unfortunately, it is very difficult to obtain monodisperse samples of ultrahigh molecular weight polyethylene and, therefore, the use of the samples studied here the best choice possible, up to now to test and revisit basic and novel aspects of the rheology of polyolefin’s.

1.
Aguilar
,
M.
,
J. F.
Vega
,
E.
Sanz
, and
J.
Martı́nez-Salazar
, “
New aspects on the rheological behaviour of metallocene catalysed polyethylenes
,”
Polymer
42
,
9713
9721
(
2001
).
2.
Aguilar
,
M.
,
J. F.
Vega
,
B.
Peña
, and
J.
Martı́nez-Salazar
, “
Novel features of the rheological behaviour of metallocene catalysed atactic poplypropylene
,”
Polymer
44
,
1401
1407
(
2003
).
3.
Arnett
,
R. L.
, and
C. P.
Thomas
, “
Zero-shear viscosity of some ethyl branched paraffinic model polymers
,”
J. Phys. Chem.
84
,
649
652
(
1980
).
4.
Ball
,
R. C.
, and
T. C. B.
McLeish
, “
Dynamic dilution and the viscosity of star polymer melts
,”
Macromolecules
22
,
1911
1913
(
1989
).
5.
Bird, R. B., R. Armstrong, and O. Hassager, Dynamics of Polymer Liquids (Wiley, New York, 1987).
6.
Carella
,
J. M.
,
W. W.
Graessley
, and
L. J.
Fetters
, “
Effects of chain microstructure on the viscoelastic properties of linear polymer melts: Polybutadienes and hydrogenated polybutadienes
,”
Macromolecules
17
,
2775
2786
(
1984
).
7.
Carlon
,
E.
,
A.
Drzewinski
, and
J. M. J.
van Leeuven
, “
Reptation in the Rubinstein-Duke model: The influence of end-reptons dynamics
,”
J. Chem. Phys.
117
,
2425
2434
(
2002
).
8.
Colby
,
R. H.
,
L. J.
Fetter
, and
W. W.
Graessley
, “
Melt viscosity-molecular weight relationship in linear polymers
,”
Macromolecules
20
,
2226
2237
(
1987
).
9.
de Gennes, P. G., Scaling Concept in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).
10.
des Cloizeaux
,
J.
, “
Double reptation vs. simple reptation in polymer melts
,”
Europhys. Lett.
5
,
437
442
(
1988
).
11.
des Cloizeaux
,
J.
, “
Relaxation of entangled polymers in melts
,”
Macromolecules
23
,
3992
4006
(
1990a
).
12.
des Cloizeaux
,
J.
, “
Relaxation and viscosity anomaly of melts made of entangled polymers. Time dependent reptation
,”
Macromolecules
23
,
4678
4687
(
1990b
).
13.
Doi, M., and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).
14.
Eckstein
,
A.
,
J.
Suhm
,
C.
Friedrich
,
R.-D.
Maier
,
J.
Sassmannshausen
,
M.
Bochman
, and
R.
Mülhaupt
, “
Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts
,”
Macromolecules
31
,
1335
1340
(
1998
).
15.
Ferry, J. D., Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
16.
Fetters
,
L. J.
,
W. W.
Graessely
, and
A. D.
Kiss
, “
Viscelastic properties of polyisobutylene melts
,”
Macromolecules
24
,
3136
3141
(
1991
).
17.
Fetters
,
L. J.
,
D. J.
Lohse
,
D.
Richter
,
T. A.
Witten
, and
A.
Zirkel
, “
Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties
,”
Macromolecules
27
,
4639
4647
(
1994
).
18.
Fetters
,
L. J.
,
D. J.
Lohse
, and
W. W.
Graessley
, “
Chain dimensions and entanglement spacings in dense macromolecular systems
,”
J. Polym. Sci., Part B: Polym. Phys.
37
,
1023
1033
(
1999a
).
19.
Fetters
,
L. J.
,
D. J.
Lohse
,
S. T.
Milner
, and
W. W.
Graessley
, “
Packing length influence in linear polymer melts on the entanglement, critical and reptation molecular weights
,”
Macromolecules
32
,
6847
6851
(
1999b
).
20.
Groves
,
D. J.
,
T. C. B.
McLeish
,
R. K.
Chohan
, and
P. D.
Coates
, “
Predicting the rheology of linear with branched polyethylene blends
,”
Rheol. Acta
35
,
481
493
(
1996
).
21.
Ketzmerick
,
R.
, and
H. C.
Ottinger
, “
Simulation of a non-Markovian process modelling contour length fluctuation in the Doi–Edwards model
,”
Continuum Mech. Thermodyn.
1
,
113
124
(
1989
).
22.
Larson
,
R. G.
,
T.
Sridar
,
L. G.
Leal
,
G. H.
McKinley
,
A. E.
Likhtman
, and
T. C. B.
McLeish
, “
Definitions of entanglement spacing and time constants in the tube model
,”
J. Rheol.
47
,
809
818
(
2003
).
23.
Léonardi
,
F.
,
J.-C.
Majesté
,
A.
Allal
, and
G.
Marin
, “
Rheological models based on the double reptation mixing rule: The effects of a polydisperse environment
,”
J. Rheol.
44
,
675
692
(
2000
).
24.
Léonardi
,
F.
,
A.
Allal
, and
G.
Marin
, “
Molecular weight distribution from viscoelastic data: The importance of tube renewal and Rouse modes
,”
J. Rheol.
46
,
209
224
(
2002
).
25.
Likhtman
,
A. E.
, and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
6343
(
2002
).
26.
Lohse
,
D. J.
,
S. T.
Milner
,
L. J.
Fetters
,
M.
Xenidou
,
N.
Hadjichristidis
,
R. A.
Mendelson
,
C. A.
Garcı́a-Franco
, and
M. K.
Lyon
, “
Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior
,”
Macromolecules
35
,
3066
3075
(
2002
).
27.
Luettmer-Strathmann
,
J.
, “
Effect of small-scale architecture on polymer mobility
,”
J. Chem. Phys.
112
,
5473
5479
(
2000
).
28.
Macosko, C. W., Rheology: Principles, Measurements and Applications. Advances in Interfacial Engineering Series (VCH, New York, 1994).
29.
Maier
,
D.
,
A.
Eckstein
,
C.
Friedrich
, and
J.
Honerkamp
, “
Evaluation of models combining rheological data with the molecular weight distribution
,”
J. Rheol.
42
,
1153
1173
(
1998
).
30.
Majeste
,
J.-C.
,
J.-P.
Montfort
,
A.
Allal
, and
G.
Marin
, “
Viscoelasticity of low molecular weight polymers at the transition to the entangled state
,”
Rheol. Acta
37
,
486
499
(
1998
).
31.
Marrucci
,
G.
, “
Relaxation by reptation and tube enlargement: A model for polydisperse polymers
,”
J. Polym. Sci.: Polym. Phys. Ed.
23
,
159
177
(
1985
).
32.
McLeish
,
T. C. B.
, and
S. T.
Milner
, “
Entangled dynamics and melt flow in branched polymers
,”
Adv. Polym. Sci.
43
,
195
256
(
1999
).
33.
Milner
,
S. T.
, “
Relating the shear-thinning curve to the molecular weight distribution in linear polymer melts
,”
J. Rheol.
40
,
303
315
(
1996
).
34.
Milner
,
S. T.
, and
T. C. B.
McLeish
, “
Parameter-free theory for stress relaxation in star polymer melts
,”
Macromolecules
30
,
2159
2166
(
1997
).
35.
Milner
,
S. T.
, and
T. C. B.
McLeish
, “
Reptation and contour-length fluctuations in melts of linear polymers
,”
Phys. Rev. Lett.
81
,
725
728
(
1998
).
36.
Montfort
,
J. P.
,
G.
Marin
, and
P.
Monge
, “
Effects of constraint release on the dynamics of entangled linear polymer melts
,”
Macromolecules
17
,
1551
1560
(
1984
).
37.
Pattamaprom
,
C.
,
R. G.
Larson
, and
T. J.
Van Dyke
, “
Quantitative predictions of linear viscoelastic rheological properties of entangled polymers
,”
Rheol. Acta
39
,
517
531
(
2000
).
38.
Pattamaprom
,
C.
, and
R. G.
Larson
, “
Predicting the linear viscoelastic properties of monodisperse and polydisperse polystyrenes and polyethylenes
,”
Rheol. Acta
40
,
516
532
(
2001
).
39.
Pearson
,
D. S.
,
L. J.
Fetters
,
W. W.
Graessley
,
G.
Ver Strate
, and
E.
von Meerwall
, “
Viscosity and diffusion coefficient of hydrogenated polybutadiene
,”
Macromolecules
27
,
711
719
(
1994
).
40.
Raju
,
V. R.
,
E. V.
Menezes
,
G.
Marin
,
W. W.
Graessley
, and
L. J.
Fetters
, “
Concentration and molecular weight dependence of viscoelastic properties in linear and star polymers
,”
Macromolecules
14
,
1676
1680
(
1981
).
41.
Schausberger
,
A.
,
G.
Schindlauer
, and
H.
Janeschitz-Kriegl
, “
Linear elastico-viscous properties of molten standard polystyrenes: Presentation of complex moduli: Role of short range structural parameters
,”
Rheol. Acta
24
,
220
227
(
1985
).
42.
Thimm
,
W.
,
C.
Friedrich
,
D.
Maier
,
M.
Marth
, and
J.
Honerkamp
, “
Determination of the molecular weight distribution for rheological data—An application to polystyrene, polymethylmetacrylate and isotactic polypropylene
,”
Appl. Rheol.
9
,
150
157
(
1999
).
43.
Thimm
,
W.
,
C.
Friedrich
,
M.
Marth
, and
J.
Honerkamp
, “
On the Rouse spectrum and the determination of the molecular weight distribution from rheological data
,”
J. Rheol.
44
,
429
438
(
2000
).
44.
Tsenoglou
,
C.
, “
Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers
,”
Macromolecules
24
,
1762
1767
(
1991
).
45.
van Ruymbeke
,
E.
,
R.
Keunings
,
V.
Stéphane
,
A.
Hagenaars
, and
C.
Bailly
, “
Evaluation of reptation models for predicting the linear viscoelastic properties of entangled linear polymers
,”
Macromolecules
35
,
2689
2699
(
2002
).
46.
Vega
,
J. F.
,
M.
Aguilar
, and
J.
Martínez-Salazar
, “
Model linear metallocence-catalyzed polyolefins. Melt rheological behavior and molecular dynamics
,”
J. Rheol.
47
,
1505
1521
(
2003
).
47.
Watanabe
,
H.
, “
Viscoelasticity and dynamics of entangled polymers
,”
Prog. Polym. Sci.
24
,
1253
1403
(
1999
).
48.
Yang
,
A.
,
S.-Q.
Wang
, and
H.
Ishida
, “
A solution approach to component dynamics of A/B miscible blends. 1. Tube dilation, reptation, and segmental friction of polymer A
,”
Macromolecules
32
,
2638
2645
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.