In the present work, we study the textural evolution of liquid crystal polymer (LCP) systems under planar shear at high shear rates, based on computational simulations using a recently developed molecular model with distortional elasticity [Feng etal. (2000)]. We concentrate our attention on the final striped texture that is observed in real LCP systems and on the secondary flow instability characterized by the formation of cross-sectional roll cells that is believed to represent the starting point of the orientational evolution. We verify that the theoretical model is capable of predicting a texture evolution that captures many of the essential features of the interplay between shear flow and LCP microstructure that are observed in experiments. We identify the mechanisms at play and the relative roles of the various forces in determining the evolution of texture at moderate shear rates and how they depend on the Deborah number, which is the characteristic parameter that defines the different regimes at moderate and high values of shear rate.

1.
Chaubal
,
C. V.
, and
L. G.
Leal
, “
A closure approximation for the liquid crystalline polymer models based on parametric density estimate
,”
J. Rheol.
42
,
177
201
(
1998
).
2.
Doi, M., and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1988).
3.
Edwards
,
B. J.
, “
Evaluation of the thermodynamic consistency of closure approximations in several models proposed for the description of liquid crystalline dynamics
,”
J. Non-Equil. Thermodyn.
27
,
5
24
(
2002
).
4.
Feng
,
J.
,
C. V.
Chaubal
, and
L. G.
Leal
, “
Closure approximations for the Doi theory: Which to use in simulating complex flows of liquid crystalline polymers?
J. Rheol.
42
,
1095
1119
(
1998
).
5.
Feng
,
J.
, and
L. G.
Leal
, “
Pressure driven channel flows of a model liquid crystalline polymer
,”
Phys. Fluids
11
,
2821
2835
(
1999
).
6.
Feng
,
J.
,
G.
Sgalari
, and
L. G.
Leal
, “
A theory for flowing nematic polymers with orientational distortions
,”
J. Rheol.
44
,
1085
1101
(
2000
).
7.
Feng
,
J.
,
J.
Tao
, and
L. G.
Leal
, “
Roll cells and disclinations in sheared polymer nematics
,”
J. Fluid Mech.
41
,
1317
1335
(
2001
).
8.
Gleeson
,
J. T.
,
R. G.
Larson
,
G.
Kiss
, and
P. E.
Cladis
, “
Image analysis of shear-induced textures in liquid crystalline polymers
,”
Liq. Cryst.
11
,
341
364
(
1992
).
9.
Hongladarom
,
K.
,
V. M.
Ugaz
,
D. K.
Cinader
,
W. R.
Burghardt
,
J. P.
Quintana
,
B. S.
Hsiao
,
M. D.
Dadmun
,
W. A.
Hamilton
, and
P. D.
Butler
, “
Birefringence, x-ray scattering and neutron scattering measurements of molecular orientation in sheared liquid crystal polymer solutions
,”
Macromolecules
29
,
5346
5355
(
1996
).
10.
Kupfermann
,
R.
,
M. N.
Kawaguchi
, and
M. M.
Denn
, “
Emergence of structure in a model of liquid crystalline polymers with elastic coupling
,”
J. Non-Newtonian Fluid Mech.
91
,
255
271
(
2000
).
11.
Larson
,
R. G.
, “
Roll-cell instabilities in shearing flows of nematic polymers
,”
J. Rheol.
37
,
175
196
(
1992
).
12.
Larson
,
R. G.
, and
D. W.
Mead
, “
Development of orientation and texture during shearing of liquid crystalline polymers
,”
Liq. Cryst.
12
,
751
768
(
1992
).
13.
Larson
,
R. G.
, and
D. W.
Mead
, “
The Ericksen number and the Deborah number cascades in sheared polymeric nematics
,”
Liq. Cryst.
15
,
151
169
(
1993
).
14.
Lathrop
,
D. P.
,
J.
Fineberg
, and
H. L.
Swinney
, “
Turbulent flow between concentric cylinders at large Reynolds number
,”
Phys. Rev. Lett.
68
,
1515
1518
(
1992
).
15.
Lele
,
S. K.
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
42
(
1992
).
16.
Magda
,
J. J.
,
S. G.
Baek
,
K. L.
de Vries
, and
R. G.
Larson
, “
Shear flows of liquid crystal polymers: Measurements of the second normal stress difference and the Doi molecular theory
,”
Macromolecules
24
,
4460
4468
(
1991
).
17.
Manneville
,
P.
, “
The transition to turbulence in nematic liquid crystals
,”
Mol. Cryst. Liq. Cryst.
70
,
1501
1528
(
1981
).
18.
Marrucci
,
G.
, and
F.
Greco
, “
The elastic constants of Maier–Saupe rodlike molecule nematics
,”
Mol. Cryst. Liq. Cryst.
206
,
17
30
(
1991
).
19.
Marrucci
,
G.
, and
F.
Greco
, “
Flow behavior of liquid crystalline polymers
,”
Adv. Chem. Phys.
86
,
331
404
(
1994
).
20.
Mather
,
P. T.
,
D.
Pearson
, and
R. G.
Larson
, “
Flow patterns and disclination-density measurements in sheared neamtic liquid crystals
,”
Liq. Cryst.
20
,
527
538
(
1996
).
21.
Moldenaers
,
P.
, and
J.
Mewis
, “
Transient behavior of LC solution of PBG
,”
J. Rheol.
30
,
567
584
(
1986
).
22.
Sgalari G., “Rheology and texture of liquid crystalline polymers,” PhD thesis, University of California, Santa Barbara, CA, 2002.
23.
Sgalari
,
G.
,
J. J.
Feng
, and
G. L.
Leal
, “
The shear flow behavior of LCPs based on a generalized Doi model with distortional elasticity
,”
J. Non-Newtonian Fluid Mech.
102
,
361
382
(
2002
).
24.
Srinivasarao
,
M.
, and
G. C.
Berry
, “
Rheo-optical studies on aligned nematic solutions of a rodlike polymer
,”
J. Rheol.
35
,
379
397
(
1991
).
25.
Tan
,
Z.
, and
G. C.
Berry
, “
Studies on the texture of nematic solutions of rodlike polymers: 3. Rheo-optical and rheological behavior in shear
,”
J. Rheol.
47
,
73
104
(
2003
).
26.
Vermant
,
J.
,
P.
Moldenaers
,
S. J.
Picken
, and
J.
Mewis
, “
A comparison between texture and rheological behavior of lyotropic liquid crystalline polymers during flow
,”
J. Non-Newtonian Fluid Mech.
53
,
1
23
(
1994
).
27.
Walker
,
L. M.
,
P.
Moldenaers
,
S. J.
Picken
, and
J.
Mewis
, “
The defect texture of LCP solution under shear
,”
Rheol. Acta
39
,
26
37
(
2000
).
28.
Wang
,
Q.
, and
E.
Weinan
, “
Kinetic theory for flows of nonhomogenous rodlike liquid crystalline polymers with a nonlocal intermolecular potential
,”
Phys. Rev. E
65
,
051504
/
1
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.