An ellipsoidal model for droplet deformation in mixtures of Newtonian fluids is proposed. The model makes a bridge between the phenomenological description of the ellipsoidal deformation of the droplet [Eshelby (1957); Maffetonne and Minale (1998); Jackson and Tucker (JT model) (2003); Wetzel and Tucker (WT model) (2001)] and the interfacial velocity calculation between two Newtonian liquids. The bridging was obtained by the use of the general boundary integral formalism. The velocity at the interface was decomposed into a flow dominated term and an interfacial term. The flow term is the same as in JT and WT models and arises from Eshelby’s theory, while the interfacial term was calculated by assuming a linear, uniform velocity gradient tensor over the entire surface of the droplet. The model for droplet deformation is applicable to mixtures of two Newtonian liquids with arbitrary viscosity ratio and nonzero interfacial tension. The predictions of the present model in terms of shape evolution of the droplet agree well with many experiments and numerical simulations including transient deformation for small and large capillary numbers, transient shear widening for small viscosity ratio and large capillary numbers, and steady shear deformation. The rheology of dilute emulsions based on the morphological predictions by the present model was calculated according to Batchelor’s formalism (1970). The predicted rheological material functions agree reasonably well with the experimental data. The limitations of the present model are also discussed.

1.
Acrivos
,
A.
, and
T. S.
Lo
, “
Deformation and breakup of a single slender drop in an extensional flow
,”
J. Fluid Mech.
86
,
641
672
(
1978
).
2.
Almusallam
,
A. S.
,
R. G.
Larson
, and
M. J.
Solomon
, “
Constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends
,”
J. Rheol.
44
,
1055
1083
(
2000
).
3.
Barthès-Biesel
,
D.
, and
A.
Acrivos
, “
Deformation and burst of a liquid droplet freely suspended in a linear shear field
,”
J. Fluid Mech.
61
,
1
21
(
1973
).
4.
Batchelor
,
G. K.
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
570
(
1970
).
5.
Bilby
,
B. A.
, and
M. L.
Kolbuszewski
, “
The finite deformation of an inhomogeneity in two-dimensional slow viscous incompressible flow
,”
Proc. R. Soc. London, Ser. A
355
,
335
353
(
1977
).
6.
Bousmina
,
M.
, “
Rheology of polymer blends: linear model for viscoelastic emulsions
,”
Rheol. Acta
38
,
73
83
(
1999
).
7.
Bousmina
,
M.
,
M.
Aouina
,
B.
Chaudhry
,
R.
Guenette
, and
R. E. S.
Bretas
, “
Rheology of polymer blends: Nonlinear model for viscoelastic emulsions undergoing high deformation flows
,”
Rheol. Acta
40
,
538
551
(
2001
).
8.
Cavallo
,
R
.,
S.
Guido
, and
M.
Simeone
, “
Linear viscoelastic behavior of a drop under oscillatory shear flow
,”
Rheol. Acta
42
,
1
9
(
2003
).
9.
Cristini
,
V.
,
R. W.
Hooper
,
C. W.
Macosko
,
M.
Simeone
, and
S.
Guido
, “
A numerical and experimental investigation of lamella blend morphologies
,”
Ind. Eng. Chem. Res.
41
,
6305
6311
(
2002a
).
10.
Cristini
,
V.
,
C. W.
Macosko
, and
T.
Jansseune
, “
A not on transient stress calculation via numerical simulations
,”
J. Non-Newtonian Fluid Mech.
105
,
177
187
(
2002b
).
11.
Doi
,
M.
, and
T.
Ohta
, “
Dynamics and rheology of complex interfaces. I
,”
J. Chem. Phys.
95
,
1242
1248
(
1991
).
12.
El Mesri, Z., Master’s thesis, Laval University, Canada (2003).
13.
Eshelby
,
J. D.
, “
The determination of elastic field of an ellipsoidal inclusion, and related problems
,”
Proc. R. Soc. London, Ser. A
241
,
376
397
(
1957
).
14.
Grace
,
H. P.
, “
Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems
,”
Chem. Eng. Commun.
14
,
225
277
(
1982
).
15.
Grmela
,
M.
, and
A.
Ait-Kadi
, “
Comments on the Doi–Ohta theory of blends
,”
J. Non-Newtonian Fluid Mech.
55
,
191
195
(
1994
).
16.
Grmela
,
M.
, and
A.
Ait-Kadi
, “
Rheology of inhomogeneous immiscible blends
,”
J. Non-Newtonian Fluid Mech.
77
,
191
199
(
1998
).
17.
Grmela
,
M.
,
M.
Bousmina
, and
J. F.
Palierne
, “
On the rheology of immiscible blends
,”
Rheol. Acta
40
,
560
569
(
2001
).
18.
Guido
,
S.
, and
F.
Greco
, “
Drop shape under slow steady shear flow and during relaxation. Experimental results and comparison with theory
,”
Rheol. Acta
40
,
176
184
(
2001
).
19.
Guido
,
S.
,
M.
Minale
, and
P. L.
Maffettone
, “
Drop shape dynamics under shear-flow reversal
,”
J. Rheol.
44
,
1385
1399
(
2000
).
20.
Guido
,
S.
, and
M.
Villone
, “
Three-dimensional shape of a drop under simple shear flow
,”
J. Rheol.
42
,
395
415
(
1998
).
21.
Hinch
,
E. J.
, and
A.
Acrivos
, “
Steady long slender droplet in two-dimensional straining motion
,”
J. Fluid Mech.
91
,
401
414
(
1979
).
22.
Hinch
,
E. J.
, and
A.
Acrivos
, “
Long slender drops in a simple shear flow
,”
J. Fluid Mech.
98
,
305
328
(
1980
).
23.
Iza
,
M.
, and
M.
Bousmina
, “
Nonlinear rheology of polymer blends: Relaxation result
,”
J. Rheol.
44
,
1363
1384
(
2000
).
24.
Jackson
,
N. E
., and
C. L.
Tucker
, “
A model for large deformation of an ellipsoid droplet with interfacial tension
,”
J. Rheol.
47
,
659
682
(
2003
).
25.
Jansseune
,
T.
,
I.
Vinckier
,
P.
Moldenaers
, and
J.
Mewis
, “
Transient stresses in immiscible model polymer blends during start-up flows
,”
J. Non-Newtonian Fluid Mech.
99
,
167
181
(
2001
).
26.
Khakhar
,
D. V.
, and
J. M.
Ottino
, “
Deformation and breakup of slender drops in linear flows
,”
J. Fluid Mech.
166
,
265
285
(
1986
).
27.
Khayat
,
R. E.
,
A.
Luciani
, and
L. A.
Utracki
, “
Boundary-element analysis of planar drop deformation in confined flow. Part 1. Newtonian fluids
,”
Eng. Anal. Boundary Elem.
19
,
279
289
(
1997
).
28.
Levitt
,
L.
, and
C. W.
Macosko
, “
Influence of normal stress difference on polymer drops deformation
,”
Polym. Eng. Sci.
36
,
1647
1655
(
1996
).
29.
Maffettone
,
P. L.
, and
M.
Minale
, “
Equation of change for ellipsoidal drops in viscous flow
,”
J. Non-Newtonian Fluid Mech.
78
,
227
241
(
1998
).
30.
Mellema
,
J.
, and
M. W. M.
Willemse
, “
Effective viscosity of dispersions approached by a statistical continuum method
,”
Physica A
122A
,
286
312
(
1983
).
31.
Palierne
,
J. F.
, “
Linear rheology of viscoelastic emulsions with interfacial tension
,”
Rheol. Acta
29
,
204
214
(
1990
).
32.
Rallison
,
J. M.
, and
A.
Acrivos
, “
A numerical study of the deformation and burst of a viscous drop in an extensional flow
,”
J. Fluid Mech.
89
,
191
200
(
1978
).
33.
Rallison
,
J. M.
, “
Note on the time-dependent deformation of a viscous drop which is almost spherical
,”
J. Fluid Mech.
98
,
625
633
(
1980
).
34.
Rallison
,
J. M.
, “
The deformation of small viscous drops and bubbles in shear flows
,”
Annu. Rev. Fluid Mech.
16
,
45
66
(
1984
).
35.
Torza
,
S.
,
R. G.
Cox
, and
S. G.
Mason
, “
Particle motions in sheared suspensions XXVII. Transient and steady deformation and burst of liquid drops
,”
J. Colloid Interface Sci.
38
,
395
411
(
1972
).
36.
Tucker
,
C. L.
, and
P.
Moldenaers
, “
Microstructural evolution in polymer blends
,”
Annu. Rev. Fluid Mech.
34
,
177
210
(
2002
).
37.
Wagner
,
N. J.
,
H. C.
Öttinger
, and
B. J.
Edwards
, “
Generalized Doi–Ohta model for multiphase flow developed via GENERIC
,”
AIChE J.
45
,
1169
1181
(
1999
).
38.
Wannaborworn
,
S.
,
M. R.
Mackley
, and
Y.
Renardy
, “
Experimental observation and matching numerical simulation for the deformation and breakup of immiscible drops in oscillatory shear
,”
J. Rheol.
46
,
1279
1293
(
2002
).
39.
Wetzel
,
E. D.
, and
C. L.
Tucker
, “
Area tensors for modeling microstructure during laminar liquid–liquid mixing
,”
Int. J. Multiphase Flow
25
,
35
61
(
1999
).
40.
Wetzel
,
E. D.
, and
C. L.
Tucker
, “
Droplet deformation in dispersions with unequal viscosities and zero interfacial tension
,”
J. Fluid Mech.
426
,
199
228
(
2001
).
41.
Wu
,
Y.
,
A. Z.
Zinchenko
, and
R. H.
Davis
, “
Ellipsoidal model for deformable drops and application to non-Newtonian emulsion flow
,”
J. Non-Newtonian Fluid Mech.
102
,
281
298
(
2002a
).
42.
Wu
,
Y.
,
A. Z.
Zinchenko
, and
R. H.
Davis
, “
General ellipsoidal model for deformable drops in viscous flows
,”
Ind. Eng. Chem. Res.
41
,
6270
6278
(
2002b
).
43.
Yamane
,
H.
,
M.
Takahashi
,
R.
Hayashi
,
K.
Okamoto
,
H.
Hashihara
, and
T.
Masuda
, “
Observation of deformation and recovery of poly(isobutylene) droplet in a poly(isobutylene)/poly(dimethyl siloxane) blend after application of step shear strain
,”
J. Rheol.
42
,
567
580
(
1998
).
44.
Yu
,
W.
,
M.
Bousmina
,
M.
Grmela
,
J. F.
Palierne
, and
C. X.
Zhou
, “
Quantitative relationship between rheology and morphology in emulsions
,”
J. Rheol.
46
,
1381
1399
(
2002a
).
45.
Yu
,
W.
,
M.
Bousmina
,
M.
Grmela
, and
C. X.
Zhou
, “
Modeling of oscillatory shear flow of emulsions under small and large deformation fields
,”
J. Rheol.
46
,
1401
1418
(
2002b
).
46.
Zinchenko
,
A. Z.
,
M. A.
Rother
, and
R. H.
Davis
, “
Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm
,”
J. Fluid Mech.
391
,
249
292
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.