In 1999, Öttinger introduced a thermodynamically admissible reptation model incorporating chain stretching, anisotropic tube cross sections, double reptation, and the convective constraint release mechanism. In this paper, we describe and use a new high-order Fokker–Planck-based numerical method for the simulation of the Öttinger model in complex geometries. Evidence, in the case of startup homogeneous flows, of the significant CPU time advantage (for comparable levels of accuracy) of our method over a stochastic simulation [Fang et al. (2000)], is presented. For the confined cylinder benchmark problem, differences in the drag behavior observed between the Öttinger model and those of Doi and Edwards (1978a, 1978b, 1978c) and Mead et al. (1998) are explained in terms of double reptation and the differing relaxation spectra.

1.
Armstrong, R. C., R. Nayak, I. Ghosh, and R. A. Brown, “The use of kinetic theory and microstructural models in the analysis of complex flows of viscoelastic liquids,” in Proceedings of the 12th International Congress on Rheology, 18–23 August, 1996, edited by Aït-Kadi, A., J. M. Dealy, D. F. James, and M. C. Williams (Laval University, Québec, 1996).
2.
Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics (Springer, Berlin, 1988).
3.
Chauvière
,
C.
, and
R. G.
Owens
, “
A new spectral element method for the reliable computation of viscoelastic flow
,”
Comput. Methods Appl. Mech. Eng.
190
,
3999
4018
(
2001
).
4.
de Gennes
,
P. G.
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
579
(
1971
).
5.
des Cloizeaux
,
J.
, “
Double reptation versus simple reptation in polymer melts
,”
Europhys. Lett.
5
,
437
442
(
1988
).
6.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems: Brownian motion in the equilibrium state
,”
J. Chem. Soc., Faraday Trans.
74
,
1789
1801
(
1978a
).
7.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems: Molecular motion under flow
,”
J. Chem. Soc., Faraday Trans.
74
,
1802
1817
(
1978b
).
8.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems: The constitutive equation
,”
J. Chem. Soc., Faraday Trans.
74
,
1818
1832
(
1978c
).
9.
Fan
,
X.-J.
, “
Viscosity, first normal-stress coefficient, and molecular stretching in dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
17
,
125
144
(
1985a
).
10.
Fan
,
X.-J.
, “
Viscosity, first normal-stress coefficients, and molecular stretching in concentrated solutions and melts
,”
J. Non-Newtonian Fluid Mech.
17
,
251
265
(
1985b
).
11.
Fan
,
X.-J.
, “
A numerical investigation of the hydrodynamic interaction for Hookean dumbbell suspensions in steady state shear flow
,”
J. Chem. Phys.
85
,
6237
6238
(
1985c
).
12.
Fan
,
X.
, “
Molecular models and flow calculation: I. The numerical solutions to multibead-rod models in inhomogeneous flows
,”
Acta Mech. Sin.
5
,
49
59
(
1989a
).
13.
Fan
,
X.
Molecular models and flow calculations: II. Simulation of steady planar flow
,”
Acta Mech. Sin.
5
,
216
226
(
1989b
).
14.
Fang
,
J.
,
M.
Kröger
, and
H. C.
Öttinger
, “
A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows
,”
J. Rheol.
44
,
1293
1317
(
2000
).
15.
Gigras
,
P. G.
, and
B.
Khomami
, “
Adaptive configuration fields: A new multiscale simulation technique for reptation-based models with a stochastic strain measure and local variations of life span distribution
,”
J. Non-Newtonian Fluid Mech.
108
,
99
122
(
2002
).
16.
Halin
,
P.
,
G.
Lielens
,
R.
Keunings
, and
V.
Legat
, “
The Lagrangian particle method for macroscopic and micro-macro viscoelastic flow computations
,”
J. Non-Newtonian Fluid Mech.
79
,
387
403
(
1998
).
17.
Hassager, O., private communication (2002).
18.
Hua
,
C. C.
, and
J. D.
Schieber
, “
Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. I. Theory and single-step strain predictions
,”
J. Chem. Phys.
109
,
10018
10027
(
1998
).
19.
Hua
,
C. C.
,
J. D.
Schieber
, and
D. C.
Venerus
, “
Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. III. Shear flows
,”
J. Rheol.
43
,
701
717
(
1999
).
20.
Hulsen
,
M. A.
,
E. A. J. F.
Peters
, and
B. H. A. A.
van den Brule
, “
The deformation fields method for solving complex flows using integral constitutive equations
,”
J. Non-Newtonian Fluid Mech.
98
,
201
221
(
2001
).
21.
Hulsen
,
M. A.
,
A. P. G.
van Heel
, and
B. H. A. A.
van den Brule
, “
Simulation of viscoelastic flows using Brownian configuration fields
,”
J. Non-Newtonian Fluid Mech.
70
,
79
101
(
1997
).
22.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
On compatibility of the Cox–Merz rule with the model of Doi and Edwards
,”
J. Non-Newtonian Fluid Mech.
65
,
241
246
(
1996
).
23.
Kahvand, H., “Strain Coupling Effects in Polymer Rheology,” Ph.D. thesis, Illinois Institute of Technology (1995).
24.
Laso
,
M.
, and
H. C.
Öttinger
, “
Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach
,”
J. Non-Newtonian Fluid Mech.
47
,
1
20
(
1993
).
25.
Liu
,
A. W.
,
D. E.
Bornside
,
R. C.
Armstrong
, and
R. C.
Brown
, “
Viscoelastic flow of polymer solutions around a periodic, linear array of cylinders: Comparisons of predictions for microstructure and flow fields
,”
J. Non-Newtonian Fluid Mech.
77
,
153
190
(
1998
).
26.
Maday, Y., A. T. Patera, and E. M. Ronquist, “The PN–PN−2 method for the approximation of the Stokes problem,” Technical Report No. 92025, Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (1992).
27.
Majda
,
A.
,
J.
McDonough
, and
S.
Osher
, “
The Fourier method for nonsmooth initial data
,”
Math. Comput.
32
,
1041
1081
(
1978
).
28.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule
,”
J. Non-Newtonian Fluid Mech.
62
,
279
289
(
1996
).
29.
Marrucci
,
G.
, and
N.
Grizzuti
, “
Fast flows of concentrated polymers—Predictions of the tube model on chain stretching
,”
Gazz. Chim. Ital.
118
,
179
185
(
1988
).
30.
Mead
,
D. W.
,
R. G.
Larson
, and
M.
Doi
, “
A molecular theory for fast flows of entangled polymers
,”
Macromolecules
31
,
7895
7914
(
1998
).
31.
Nayak, R., “Molecular simulation of liquid crystal polymer flow: A wavelet-finite element analysis,” Ph.D. thesis, MIT, Cambridge, MA (1998).
32.
Öttinger, H. C., Stochastic Processes in Polymeric Fluids (Springer, Berlin, 1996).
33.
Öttinger
,
H. C.
, “
A thermodynamically admissible reptation model for fast flows of entangled polymers
,”
J. Rheol.
43
,
1461
1493
(
1999
).
34.
Öttinger
,
H. C.
,
B. H. A. A.
van den Brule
, and
M. A.
Hulsen
, “
Brownian configuration fields and variance reduced CONNFFESSIT
,”
J. Non-Newtonian Fluid Mech.
70
,
255
261
(
1997
).
35.
Owens
,
R. G.
, and
T. N.
Phillips
, “
Steady viscoelastic flow past a sphere using spectral elements
,”
Int. J. Numer. Methods Eng.
39
,
1517
1534
(
1996
).
36.
Owens, R. G., and T. N. Phillips, Computational Rheology (Imperial College Press/World Scientific, Singapore, 2002).
37.
Pearson
,
D. S.
,
A. D.
Kiss
,
L. J.
Fetters
, and
M.
Doi
, “
Flow-induced birefringence of concentrated polyisoprene solutions
,”
J. Rheol.
33
,
517
535
(
1989
).
38.
Peters
,
E. A. J. F.
,
M. A.
Hulsen
, and
B. H. A. A.
van den Brule
, “
Instationary Eulerian viscoelastic flow simulations using time separable Rivlin–Sawyers constitutive equations
,”
J. Non-Newtonian Fluid Mech.
89
,
209
228
(
2000a
).
39.
Peters
,
E. A. J. F.
,
A. P. G.
van Heel
,
M. A.
Hulsen
, and
B. H. A. A.
van den Brule
, “
Generalization of the deformation field method to simulate advanced reptation models in complex flow
,”
J. Rheol.
44
,
811
829
(
2000b
).
40.
Peters, E. A. J. F., private communication (2002).
41.
Suen
,
J. K. C.
,
Y. L.
Joo
, and
R. C.
Armstrong
, “
Molecular orientation effects in viscoelasticity
,”
Annu. Rev. Fluid Mech.
34
,
41
444
(
2002
).
42.
Tsenoglou
,
C.
, “
Viscoelasticity of binary homopolymer blends
,”
Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.)
28
,
185
186
(
1987
).
43.
van Heel
,
A. P. G.
,
M. A.
Hulsen
, and
B. H. A. A.
van den Brule
, “
Simulation of the Doi–Edwards model in complex flow
,”
J. Rheol.
43
,
1239
1260
(
1999
).
44.
Wapperom
,
P., R. Keunings
, and
V.
Legat
, “
The backward-tracking Lagrangian particle method for transient viscoelastic flows
,”
J. Non-Newtonian Fluid Mech.
91
,
273
295
(
2000
).
45.
Warner
,
H. R.
, “
Kinetic theory and rheology of dilute suspensions of finitely finitely extendible dumbbells
,”
Ind. Eng. Chem. Fundam.
11
,
379
387
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.