A set of torsional resonators is used to characterize the linear viscoelastic behavior of complex fluids in the kilohertz range. The frequency dependence of the elastic and loss modulus of a hard sphere dispersion, electrostatically and electrosterically stabilized particles, worm-like micelles, polystyrene microgels, and polymer solutions is studied. The results are compared to theoretical predictions for these systems. The utility of the instrument for characterizing the high frequency rheology of complex fluids is demonstrated. This is especially relevant for suspensions or dilute solutions and gels, where time-temperature superposition often fails and the relaxation spectrum is inaccessible from conventional oscillatory shear rotational rheometry.

1.
Bartsch
,
E.
,
S.
Kirsch
,
P.
Lindner
,
T.
Scherer
, and
S.
Stolken
, “
Spherical microgel colloids—hard spheres from soft matter
,”
Ber. Bunsenges. Phys. Chem.
102
,
1597
1602
(
1998
).
2.
Bergenholtz
,
J.
,
N.
Willenbacher
,
N. J.
Wagner
,
B.
Morrison
,
D.
van den Ende
, and
J.
Mellema
, “
Colloidal charge determination in concentrated liquid dispersion using torsional resonator oscillation
,”
J. Colloid Interface Sci.
202
,
430
440
(
1998
).
3.
Blackwell
,
R. J.
,
O. G.
Harlen
, and
T. C. B.
McLeish
, “
Theoretical linear and nonlinear rheology of symmetric treelike polymer melts
,”
Macromolecules
34
,
2579
2595
(
2001
).
4.
Blom
,
C.
, and
J.
Mellema
, “
Torsion pendula with electromagnetic drive and detection system for measuring the complex shear modulus of liquids in the frequency range 80–2500 Hz
,”
Rheol. Acta
23
,
98
105
(
1984
).
5.
Buscall
,
R.
,
J. W.
Goodwin
,
M. W.
Hawkins
, and
R. H.
Ottewill
, “
Viscoelastic properties of concentrated lattices. 2. Theoretical-analysis
,”
J. Chem. Soc., Faraday Trans. 1
78
,
2889
2899
(
1982
).
6.
Doi, M., and S. F. Edwards, The Theory of Polymer Dynamics, (Clarendon, Oxford, 1986).
7.
Elliott
,
S. L.
, and
W. B.
Russel
, “
High frequency shear modulus of polymerically stabilized colloids
,”
J. Rheol.
42
,
361
378
(
1998
).
8.
Ferry, J. D., Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
9.
Fischer
,
P.
, and
H.
Rehage
, “
Rheological master curves of viscoelastic surfactant solutions by varying the solvent viscosity and temperature
,”
Langmuir
13
,
7012
7020
(
1997
).
10.
Fritz
,
G.
,
B. J.
Maranzano
,
N. J.
Wagner
, and
N.
Willenbacher
, “
High frequency rheology of hard sphere colloidal dispersions measured with a torsional resonator
,”
J. Non-Newtonian Fluid Mech.
102
,
149
156
(
2002a
).
11.
Fritz
,
G.
,
V.
Schädler
,
N. J.
Wagner
, and
N.
Willenbacher
, “
Electrosteric stabilization of colloidal dispersions
,”
Langmuir
18
,
6381
6390
(
2002b
).
12.
Horn
,
F. M.
,
W.
Richtering
,
J.
Bergenholtz
,
N.
Willenbacher
, and
N. J.
Wagner
, “
Hydrodynamic and colloidal interactions in concentrated charge-stabilized polymer dispersions
,”
J. Colloid Interface
225
,
166
178
(
2000
).
13.
Hvidt
,
S.
,
F. H. M.
Nestler
,
M. L.
Greaser
, and
J. D.
Ferry
, “
Flexibility of myosin rod determined from dilute solution viscoelastic measurements
,”
Biochem. J.
21
,
4064
4073
(
1982
).
14.
Larson
,
R. G.
, “
Combinatorial rheology of branched polymer melts
,”
Macromolecules
34
,
4556
4571
(
2001
).
15.
Lionberger
,
R. A.
, and
W. B.
Russel
, “
High frequency modulus of hard-sphere colloids
,”
J. Rheol.
38
,
1885
1908
(
1994
).
16.
Maranzano
,
B. J.
,
N. J.
Wagner
,
G.
Fritz
, and
O.
Glatter
, “
Surface charge of 3-(trimethoxysilyl) propyl methacrylate (TPM) coated Stöber silica colloids by zeta-phase analysis light scattering and small angle neutron scattering
,”
Langmuir
16
,
10556
10558
(
2000
).
17.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
The effects of particle size on reversible shear thickening of concentrated colloidal dispersions
,”
J. Chem. Phys.
114
,
10514
10527
(
2001
).
18.
Mason
,
W. P.
, “
Measurement of the viscosity and shear elasticity of liquids by means of a torsionally vibrating crystal
,”
Trans. ASME
69
,
359
370
(
1949
).
19.
McLeish
,
T. C. B.
, “
Hierarchical relaxation in tube models of branched polymers
,”
Europhys. Lett.
6
,
511
516
(
1988
).
20.
Morse
,
D. C.
, “
Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response
,”
Macromolecules
31
,
7044
7067
(
1998
).
21.
Nakken
,
T.
,
G. H.
Nyland
,
K. D.
Knudsen
,
A.
Mikkelsen
, and
A.
Elgsaeter
, “
A new torsional rod instrument for high frequency dynamic viscoelastic measurements
,”
J. Non-Newtonian Fluid Mech.
52
,
217
232
(
1994
).
22.
Nakken
,
T.
,
K. D.
Knudsen
,
A.
Mikkelsen
, and
A.
Elgsaeter
, “
Dynamics of coaxial torsional resonators consisting or segments with different radii, material properties and surrounding media
,”
Rheol. Acta
34
,
235
247
(
1995
).
23.
Oosterbroeck
,
M.
,
H. A.
Waterman
,
S. S.
Wisall
,
E. G.
Altena
,
J.
Mellema
, and
G. A. M.
Kip
, “
Automatic apparatus, based upon a nickel-tube resonator, for measuring the complex shear modulus of liquids in the kHz range
,”
Rheol. Acta
19
,
497
506
(
1980
).
24.
Pechhold
,
W.
, “
Eine methode zur messung des komplexen schubmoduls im frequenzbereich 1–100 kHz
,”
Acustica
9
,
39
48
(
1959
).
25.
Rouse
,
P. E. J.
, “
A theory of the linear viscoelastic properties of dilute solutions of coiling polymers
,”
J. Chem. Phys.
21
,
1272
1280
(
1953
).
26.
Russel, W. N., D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, New York, 1989).
27.
Schrag
,
J. L.
, and
R. M.
Johnson
, “
Application of the Birnboim multiple lumped resonator principle to viscoelastic measurements of dilute macromolecular solutions
,”
Rev. Sci. Instrum.
42
,
224
232
(
1971
).
28.
Schrag
,
J. L.
, “
Deviation of velocity gradient profiles from the ‘gap loading’ and ‘surface loading’ limits in dynamic simple shear experiments
,”
Trans. Soc. Rheol.
21
,
399
413
(
1977
).
29.
Stokich
,
T. M.
,
R. R.
Radtke
,
C. C.
White
, and
J. L.
Schrag
, “
An instrument for precise measurement of viscoelastic properties of low viscosity dilute macromolecular solutions at frequencies from 20 to 500 kHz
,”
J. Rheol.
38
,
1195
1210
(
1994
).
30.
Thurston, R. N., “Wave propagation in fluids and normal solids,” in Physical Acoustics: Principles and Methods, Vol. 1, Part A, edited by W. P. Mason (Academic, New York, 1964), pp. 1–110.
31.
Wagner
,
N. J.
, “
The high-frequency shear modulus of colloidal suspensions and the effects of hydrodynamic interactions
,”
J. Colloid Interface Sci.
161
,
169
181
(
1993
).
32.
van den Ende
,
D.
,
J.
Mellema
, and
C.
Blom
, “
Driven torsion pendulum for measuring the complex shear modulus in a stready shear flow
,”
Rheol. Acta
31
,
194
205
(
1992
).
33.
van der Werff
,
J. C.
,
C. G.
de Kruif
,
C.
Blom
, and
J.
Mellema
, “
Linear viscoelastic behavior of dense hard-sphere dispersions
,”
Phys. Rev. A
39
,
795
807
(
1989
).
34.
White
,
C. C.
, and
J. L.
Schrag
, “
Theoretical predictions for the mechanical response of a model quartz crystam microbalance to two viscoelastic media: A thin sample layer and surrounding bath medium
,”
J. Chem. Phys.
111
,
11192
11206
(
1999
).
35.
Willenbacher, N., and W. Pechhold, “Torsional resonance oscillation—New prospects for an old technique,” Proceedings of the XIIIth International Congress on Rheology, Cambridge, UK, 2000, Vol. 3, pp. 69–71.
36.
Wittmer
,
J.
,
A.
Johner
, and
J. F.
Joanny
, “
Some dynamic properties of grafted polymer layers
,”
Colloids Surf., A
86
,
85
89
(
1994
).
37.
Zimm
,
B. H.
, “
Dynamics of polymer molecules in dilute solutions: Viscoelasticity, flow birefringence and dielectric loss
,”
J. Chem. Phys.
24
,
269
278
(
1956
).
38.
Zwanzig
,
R.
, and
R. D.
Mountain
, “
High frequency elastic moduli of simple fluids
,”
J. Chem. Phys.
43
,
4464
(
1965
).
This content is only available via PDF.
You do not currently have access to this content.