Steady state viscosity and thixotropy of hydrophobically modified hydroxyethyl cellulose (HMHEC) and nonassociative cellulose water solutions are studied. Although all the samples are shear thinning, only the HMHEC is thixotropic, since the migration of hydrophobes to micelles is controlled by diffusion. The Cross model fits steady state curves. The Mewis model, a phenomenological model that proposes that the rate of change of viscosity when the shear rate is suddenly changed is related to the difference between the steady state and current values of viscosity raised to an exponent, fits structure construction experiments when the exponent, n, is estimated to be around 2. The Newtonian assumption used by Mewis cannot be used here, however. This seems to be related to the fact that the thickening is due to bridged micelle formation, which is a slow process, and also to topological constraints and entanglements, which are rapid processes. The kinetic parameter was redefined to kn in order to make it independent of initial conditions. So, kn depends only on how the shear affects the structure. kn reaches a plateau at shear rates too low to produce structure destruction and decreases at higher shear rates.

1.
Acierno
,
D.
,
F. P.
La Mantia
,
G.
Marrucci
, and
G.
Titomanlio
, “
A non-linear viscoelastic model with structure-dependent relaxation times
,”
J. Non-Newtonian Fluid Mech.
1
,
125
146
(
1976
).
2.
Alessandrini
,
A.
,
R.
Lapasin
, and
F.
Sturzi
, “
The kinetics of thixotropic behavior in clay/kaolin aqueous solutions
,”
Chem. Eng. Commun.
17
,
13
22
(
1982
).
3.
Annable
,
T.
, and
R.
Buscall
, “
The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory
,”
J. Rheol.
37
,
695
726
(
1993
).
4.
Baravian
,
C.
,
D.
Quemada
, and
A.
Parker
, “
Modeling thixotropy using a novel structural kinetics approach. Basis and application to a solution of iota-carrageenan
,”
J. Texture Stud.
27
,
371
390
(
1996
).
5.
Barnes
,
H. A.
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
6.
Bautista
,
F.
,
J. M.
de Santos
,
J. E.
Puig
, and
O.
Manero
, “
Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions
,”
J. Non-Newtonian Fluid Mech.
80
,
93
113
(
1999
).
7.
Brown
,
R.
, “
Advances on thickener technology for waterborne coatings
,”
Eur. Polym. J.
184
,
267
270
(
1994
).
8.
Croll
,
S. G.
, and
R. L.
Kleinlein
, “
Influence of cellulose ethers on coatings performance
,”
Adv. Chem. Ser.
213
,
333
350
(
1986
).
9.
Cross
,
M. M.
, “
Rheology of non-Newtonian fluids. Flow equation for pseudoplastic systems
,”
J. Colloid Sci.
20
,
417
437
(
1965
).
10.
De Kee
,
D.
,
R. K.
Code
, and
G.
Turcotte
, “
Flow properties of time-dependent foodstuffs
,”
J. Rheol.
27
,
581
604
(
1983
).
11.
Denny
,
D. A.
, and
R. S.
Brodkey
, “
Kinetic interpretation of non-Newtonian flow
,”
J. Appl. Phys.
33
,
2269
2274
(
1962
).
12.
Emmons, W. D., and E. S. Travis, “Polyurethane thickeners in latex compositions,” U.S. Patent No. 4079,028 (filed 1978).
13.
Fredrickson
,
A. G.
, “
A model for the thixotropy of suspensions
,”
AIChE J.
16
,
436
441
(
1970
).
14.
Glass
,
J. E.
,
D. N.
Schulz
, and
C. F.
Zukoski
, “
Polymers as rheology modifiers
,”
ACS Symp. Ser.
462
,
2
17
(
1991
).
15.
Goodwin
,
J. W.
, and
R. W.
Hughes
, “
Particle interactions and dispersion rheology
,”
ACS Symp. Ser.
663
,
94
125
(
1997
).
16.
Goodwin
,
J. W.
,
R. W.
Hughes
,
C. K.
Lam
,
J. A.
Miles
, and
B. C. H.
Warren
, “
The rheological properties of a hydrophobically modified cellulose
,”
Adv. Chem. Ser.
223
,
365
378
(
1989
).
17.
Groot
,
R. D.
, and
G. M.
Agterof
, “
Dynamic viscoelastic modulus of associative polymer networks: Off-lattice simulations, theory and comparison to experiments
,”
Macromolecules
28
,
6284
6293
(
1995
).
18.
Hoy, K. L., and R. C. Hoy, “Polymers with hydrophobe branches,” U.S. Patent No. 4,426,485 (filed 1984).
19.
Jenkins
,
R. D.
,
L. M.
DeLong
, and
D. R.
Basset
, “
Influence of alkali-soluble associative emulsion polymer architecture on rheology
,”
Adv. Chem. Ser.
248
,
425
447
(
1996
).
20.
Jenkins
,
R. D.
,
C. A.
Silebi
, and
M. S.
El-Aasser
, “
Steady-shear and linear-viscoelastic material properties of model associative polymer solutions
,”
ACS Symp. Ser.
462
,
222
233
(
1991
).
21.
Kaczmarski
,
J. P.
, and
J. E.
Glass
, “
Synthesis and solution properties of hydrophobically-modified ethoxylated urethanes with variable oxyethylene spacer lengths
,”
Macromolecules
26
,
5149
5156
(
1993
).
22.
Karlson
,
L.
,
F.
Joabson
, and
K.
Thuresson
, “
Phase behavior and rheology in water and in model paint formulations thickened with HM-EHEC: Influence of the chemical structure and the distribution of hydrophobic tails
,”
Carbohydr. Polym.
41
,
25
35
(
2000
).
23.
Karunasena
,
A.
,
G.
Brown
, and
J. E.
Glass
, “
Hydrophobically modified ethoxylated urethane architecture. Importance for aqueous- and dispersed-phase properties
,”
Adv. Chem. Ser.
223
,
495
525
(
1989
).
24.
Kästner
,
U.
, “
The impact of rheological modifiers on water-borne coatings
,”
Colloids Surf., A
183
,
805
821
(
2001
).
25.
Kästner
,
U.
,
H.
Hoffmann
,
R.
Dönges
, and
R.
Ehrler
, “
Interactions between modified hydroxyethyl cellulose (HEC) and surfactants
,”
Colloids Surf., A
112
,
209
225
(
1996
).
26.
Kroon
,
G.
, “
Associative behavior of hydrophobically modified hydroxyethyl celluloses (HMHECs) in water-borne coatings
,”
Prog. Org. Coat.
22
,
245
260
(
1993
).
27.
Landoll
,
L. M.
, “
Nonionic polymer surfactants
,”
J. Polym. Sci.
20
,
443
455
(
1982
).
28.
Lapasin, R., M. Grassi, and S. Pricl, “Fractal approach to rheological modeling of aggregate suspensions,” in A. Ait-Kadi, J. M. Dealy, D. F. James, and M. C. Williams, Proceedings of the XIIth International Congress on Rheology, Laval University, Quebec City, Canada, 1996, p. 524.
29.
Maestro
,
A.
,
C.
González
, and
J. M.
Gutiérrez
, “
Rheological behavior of HMHEC solutions
,”
J. Rheol.
46
,
127
143
(
2002
).
30.
McCormick
,
C. L.
, and
C. B.
Johnson
, “
Synthetically structured water-soluble copolymers. Associations by hydrophobic or ionic mechanisms
,”
Adv. Chem. Ser.
223
,
437
454
(
1989
).
31.
Mewis
,
J.
, “
Thixotropy—A general review
,”
J. Non-Newtonian Fliud Mech.
6
,
1
20
(
1979
).
32.
Papir
,
Y. S.
, and
I. M.
Krieger
, “
Rheological studies on dispersions of uniform colloidal spheres. II. Dispersions in nonaqueous media
,”
J. Colloid Interface Sci.
34
,
126
130
(
1970
).
33.
Quemada
,
D.
, “
Rheological modeling of complex fluids. IV: Thixotropic and ‘thixoelastic’ behavior. Start-up and stress relaxation, creep tests and hysteresis cycles
,”
Eur. Phys. J. A
5
,
191
207
(
1999
).
34.
Reuvers
,
A. J.
, “
Control of rheology of water-borne paints using associative thickeners
,”
Prog. Org. Coat.
35
,
171
181
(
1999
).
35.
Sau
,
A. C.
, and
L. M.
Landoll
, “
Synthesis and solution properties of hydrophobically modified (hydroxyethyl)cellulose
,”
Adv. Chem. Ser.
223
,
343
363
(
1989
).
36.
Schwab
,
F. G.
, “
Advantages and disadvantages of associative thickeners in coatings performance
,”
Adv. Chem. Ser.
213
,
369
373
(
1986
).
37.
Seneker
,
S. D.
, and
J. E.
Glass
, “
Reaction parameter effects on substituent distributions in the heterogeneous synthesis of cellulose ethers
,”
Adv. Chem. Ser.
248
,
125
137
(
1996
).
38.
Soong
,
D. S.
, and
M. M.
Shen
, “
A kinetic network model for nonlinear viscoelastic flow properties of entangled monodisperse polymers
,”
J. Polym. Sci., Polym. Lett. Ed.
17
,
595
599
(
1979
).
39.
Svanholm
,
T.
,
F.
Molenaar
, and
A.
Toussaint
, “
Associative thickeners: Their adsorption behavior onto latexes and the rheology of their solutions
,”
Prog. Org. Coat.
30
,
159
165
(
1997
).
40.
Tam
,
K. C.
,
R. D.
Jenkins
,
M. A.
Winnik
, and
D. R.
Basset
, “
A structural model of hydrophobically modified urethane-ethoxylated (heur) associative polymers in shear flow
,”
Macromolecules
31
,
4149
4159
(
1998
).
41.
Tanaka
,
R.
,
J.
Meadows
,
P. A.
Williams
, and
G. O.
Phillips
, “
Interactions of hydrophobically modified (hydroxyethyl)cellulose with various added surfactants
,”
Macromolecules
25
,
1304
1310
(
1992
).
42.
Tarng
,
M. R.
, and
J. E.
Glass
, “
Thixotropy in HMHEC/SDS associative thickener aqueous solutions
,”
Polym. Mater. Sci. Eng.
72
,
380
381
(
1995
).
43.
Tarng
,
M. R.
,
M.
Zeying
,
K.
Alahapperuma
, and
J. E.
Glass
, “
Associative thickeners in the land of commercial reality: Coating formulations
,”
Adv. Chem. Ser.
248
,
450
486
(
1996
).
44.
Tiu
,
C.
, and
D. V.
Boger
, “
Complete rheological characterization of time-dependent products
,”
J. Texture Stud.
5
,
329
338
(
1974
).
45.
Vittadello
,
S. T.
, and
S.
Biggs
, “
Shear history effects in associative thickener solutions
,”
Macromolecules
31
,
7691
7697
(
1998
).
46.
Wetzel
,
W. H.
,
M.
Chen
, and
J. E.
Glass
, “
Associative thickeners. An overview with an emphasis on synthetic procedures
,”
Adv. Chem. Ser.
248
,
163
179
(
1996
).
47.
Witten
,
T. A.
and
M. H.
Cohen
, “
Cross-linking in shear-thickening ionomers
,”
Macromolecules
18
,
1915
1918
(
1985
).
48.
Xu
,
B.
,
A.
Yekta
, and
M. A.
Winnik
, “
Viscoelastic properties in water of comb associative polymers based on poly(ethylene oxide)
,”
Langmuir
13
,
6903
6911
(
1997
).
49.
Xu
,
B.
,
A.
Yekta
,
Z.
Masoumi
, and
M. A.
Winnik
, “
The functionality of associative polymer networks: The association behavior of hydrophobically modified urethane-ethoxylated (HEUR) associative polymers in aqueous solution
,”
Colloids Surf., A
112
,
239
250
(
1996
).
50.
Yekta
,
A.
,
J.
Duhamel
,
H.
Adiwidjaja
,
P.
Brochard
, and
M. A.
Winnik
, “
Fluorescence studies of associating polymers in water: Determination of the chain end aggregation number and a model for the association process
,”
Macromolecules
28
,
956
966
(
1995
).
51.
Yekta
,
A.
,
B.
Xu
,
J.
Duhamel
,
H.
Adiwidjaja
, and
M. A.
Winnik
, “
Association structure of telechelic associative thickeners in water
,”
Langmuir
9
,
881
883
(
1993
).
52.
Zhang
,
L. M.
, “
Cellulosic associative thickeners
,”
Carbohydr. Polym.
45
,
1
10
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.