A new x-ray shear cell capable of probing complex fluid structure in the flow-gradient (“1–2”) plane is used to study orientational dynamics of nematic surfactants in transient shear flows. Two surfactant systems are studied, one of which (SDS/decanol) apparently exhibits shear aligning dynamics and the other of which (CPyCl/hexanol) exhibits director tumbling. Data on the SDS/decanol system exhibit what appear to be common characteristics of aligning nematics: constant orientation state in steady shear; a single undershoot of long duration in average orientation upon flow reversal; and no significant orientation change upon step increase or decrease in shear rate or upon flow cessation. These data are discussed in light of similar measurements on shear aligning thermotropic liquid-crystalline polymers, and polydomain model predictions of transient orientation for aligning nematics. Shear reversal data on CPyCl/hexanol show an oscillatory response typical of tumbling materials, but in better qualitative agreement with the Larson–Doi polydomain model than similar recent measurements on lyotropic polymer solutions.

1.
Archer
,
L. A.
and
R. G.
Larson
, “
A molecular theory of flow-alignment and tumbling in sheared nematic liquid crystals
,”
J. Chem. Phys.
103
,
3108
3111
(
1995
).
2.
Berret
,
J.-F.
and
D. C.
Roux
, “
Rheology of nematic wormlike micelles
,”
J. Rheol.
39
,
725
741
(
1995
).
3.
Berret
,
J.-F.
,
D. C.
Roux
,
G.
Porte
, and
P.
Lindner
, “
Tumbling behavior of nematic wormlike micelles
,”
Europhys. Lett.
32
,
137
142
(
1995
).
4.
Berret
,
J.-F.
,
D. C.
Roux
, and
P.
Linder
, “
Structure and rheology of concentrated wormlike micelles at the shear-induced isotropic-to-nematic transition
,”
Eur. Phys. J. B
5
,
67
77
(
1998
).
5.
Berret, J.-F., J. Vermant, and L. Noirez, “Lyotropic surfactant nematics under shear: Neutron scattering in the vorticity plane,” Proceedings of the XIIIth International Congress on Rheology, Cambridge, 3, 273–275 (2000).
6.
Burghardt
,
W. R.
, “
Molecular orientation and rheology in sheared lyotropic liquid-crystalline polymers
,”
Macromol. Chem. Phys.
199
,
471
488
(
1998
).
7.
Caputo
,
F. E.
,
W. R.
Burghardt
, and
J.-F.
Berret
, “
Tumbling dynamics in a nematic surfactant solution in transient shear flows
,”
J. Rheol.
43
,
765
779
(
1999
).
8.
Caputo
,
F. E.
and
W. R.
Burghardt
, “
Real-time 1–2 plane SAXS measurements of molecular orientation in sheared liquid-crystalline polymers
,”
Macromolecules
34
,
6684
6694
(
2001
).
9.
Cinader
, Jr.,
D. K.
and
W. R.
Burghardt
, “
Polydomain model predictions of liquid-crystalline polymer orientation in mixed shear/extensional channel flows
,”
Rheol. Acta
39
,
259
270
(
2000
).
10.
Doi
,
M.
, “
Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid-crystalline phases
,”
J. Polym. Sci., Polym. Phys. Ed.
19
,
229
243
(
1981
).
11.
Ericksen
,
J. L.
, “
Anisotropic fluids
,”
Arch. Ration. Mech. Anal.
4
,
231
237
(
1960
).
12.
Han
,
C. D.
,
V. M.
Ugaz
, and
W. R.
Burghardt
, “
Shear stress overshoots in flow inception of semiflexible thermotropic liquid-crystalline polymers: Experimental test of a parameter-free model prediction
,”
Macromolecules
34
,
3642
3645
(
2001
).
13.
Hongladarom
,
K.
and
W. R.
Burghardt
, “
Molecular alignment of polymer liquid crystals in shear flows. 2. Transient flow behavior in poly(benzyl glutamate) solutions
,”
Macromolecules
26
,
785
794
(
1993
).
14.
Hongladarom
,
K.
and
W. R.
Burghardt
, “
Measurement of the full refractive index tensor in sheared liquid-crystalline polymer solutions
,”
Macromolecules
27
,
483
489
(
1994
).
15.
Hongladarom
,
K.
,
V. M.
Ugaz
,
D. K.
Cinader
,
W. R.
Burghardt
,
J. P.
Quintana
,
B. S.
Hsiao
,
M. D.
Dadmun
,
W. A.
Hamilton
, and
P. D.
Butler
, “
Birefringence, x-ray scattering and neutron-scattering measurements of molecular orientation in sheared liquid-crystalline polymers
,”
Macromolecules
29
,
6346
5355
(
1996
).
16.
Itri
,
R.
and
L. Q.
Amaral
, “
Micellar shape anisotropy near-isotropic-liquid-crystal phase transition
,”
Phys. Rev. E
47
,
2551
2557
(
1993
).
17.
Janeschitz-Kriegl, H., Polymer Melt Rheology and Flow Birefringence (Springer, Berlin, 1983).
18.
Kawaguchi
,
M. N.
and
M. M.
Denn
, “
A mesoscopic theory of liquid-crystalline polymers
,”
J. Rheol.
43
,
111
124
(
1999
).
19.
Larson
,
R. G.
and
M.
Doi
, “
Mesoscopic domain theory for textured liquid-crystalline polymers
,”
J. Rheol.
35
,
539
563
(
1991
).
20.
Larson, R. G., The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).
21.
Leslie
,
F. M.
, “
Theory of flow phenomena in liquid crystals
,”
Adv. Liq. Cryst.
4
,
1
81
(
1979
).
22.
Long
,
D.
and
D. C.
Morse
, “
Linear viscoelasticity and director dynamics of nematic liquid- crystalline polymer melts
,”
Europhys. Lett.
49
,
255
261
(
2000
).
23.
Long
,
D.
and
D. C.
Morse
, “
A Rouse-like model of liquid-crystalline polymer melts: Director dynamics and linear viscoelasticity
,”
J. Rheol.
46
,
49
92
(
2002
).
24.
Marrucci
,
G.
and
P. L.
Maffettone
, “
Nematic phase of rodlike polymers. II. Polydomain predictions in the tumbling regime
,”
J. Rheol.
34
,
1231
1244
(
1990
).
25.
Maffettone
,
P. L.
and
G.
Marrucci
, “
The nematic dumbbell model
,”
J. Rheol.
36
,
1547
1561
(
1992
).
26.
Mather
,
P. T.
,
H. G.
Jeon
,
C. D.
Han
, and
S.
Chang
, “
Morphological and rheological responses to shear startup and flow reversal of thermotropic liquid-crystalline polymers
,”
Macromolecules
33
,
7594
7608
(
2000
).
27.
Mewis
,
J.
and
P.
Moldenaers
, “
Transient rheological behavior of a lyotropic polymeric liquid crystal
,”
Mol. Cryst. Liq. Cryst.
153
,
291
300
(
1987
).
28.
Moldenaers
,
P.
,
M.
Mortier
, and
J.
Mewis
, “
Transient normal stresses in lyotropic liquid-crystalline polymers
,”
Chem. Eng. Sci.
49
,
699
707
(
1993
).
29.
Noirez
,
L.
and
A.
Lapp
, “
Shear-flow-induced transition from liquid-crystalline to polymer behavior in side-chain liquid-crystal polymers
,”
Phys. Rev. Lett.
78
,
70
73
(
1997
).
30.
Roux
,
D. C.
,
J.-F.
Berret
,
G.
Porte
,
E.
Peuvrel-Disdier
, and
P.
Lindner
, “
Shear-induced orientations and textures of nematic living polymers
,”
Macromolecules
28
,
1681
1687
(
1995
).
31.
Thiele
,
T.
,
J.-F.
Berret
,
S.
Müller
, and
C.
Schmidt
, “
Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water nematics
,”
J. Rheol.
45
,
29
48
(
2001
).
32.
Ugaz
,
V. M.
and
W. R.
Burghardt
, “
In situ x-ray scattering study of a model thermotropic copolyester under shear: Evidence and consequences of flow-aligning behavior
,”
Macromolecules
31
,
8474
8484
(
1998
).
33.
Ugaz, V. M., “Investigation of the effect of shear flow on molecular orientation in model thermotropic liquid-crystalline polymers using in situ x-ray scattering,” Ph.D. thesis, Northwestern University (1999).
34.
Ugaz
,
V. M.
,
W. R.
Burghardt
,
W.
Zhou
, and
J. A.
Kornfield
, “
Transient molecular orientation and rheology in flow aligning thermotropic liquid-crystalline polymers
,”
J. Rheol.
45
,
1029
1063
(
2001
).
35.
Vermant
,
J.
,
M.
Mortier
,
P.
Moldenaers
, and
J.
Mewis
, “
An evaluation of the Larson–Doi model for liquid-crystalline polymers using recoil
,”
Rheol. Acta
38
,
618
627
(
1999
).
36.
Zhou
,
W.
,
J. A.
Kornfield
, and
W. R.
Burghardt
, “
Shear aligning properties of a main chain thermotropic liquid-crystalline polymer
,”
Macromolecules
34
,
3654
3660
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.