Quantitative measurements of molecular orientation and rheology are reported for various transient shear flows of a nematic semiflexible copolyether. Unlike the case of lyotropic liquid crystalline polymers (LCPs), whose structure and rheology in shear are dominated by director tumbling, this material exhibits flow aligning behavior. The observed behavior is quite similar to that seen in a copolyester that we have recently studied [Ugaz and Burghardt (1998)], suggesting that flow aligning dynamics may predominate in main-chain thermotropes that incorporate significant chain flexibility. Since the flow aligning regime has received little attention in previous attempts to model the rheology of textured, polydomain LCPs, we attempt to determine whether available models are capable of predicting the orientation and stress response of this class of LCP. We first examine the predictions of the polydomain Ericksen model, an adaptation of Ericksen’s transversely isotropic fluid model which accounts for the polydomain distribution of director orientation while neglecting distortional elasticity. This simple model captures a number of qualitative and quantitative features associated with the evolution of orientation and stress during shear flow inception, but cannot cope with reversing flows. To consider the possible role of distortional elasticity in the re-orientation dynamics upon reversal, we evaluate the mesoscopically averaged domain theory of Larson and Doi [Larson and Doi (1991)], which incorporates a phenomenological description of distortional elastic effects. To date, their approach to account for polydomain structure has only been applied to describe tumbling LCPs. We find that it captures the qualitative transient orientation response to flow reversals, but is less successful in describing the evolution of stresses. This is linked to the decoupling approximation adopted during the model’s development. Finally, a modified polydomain Ericksen model is introduced that provides some of the benefits of the Larson–Doi model while offering more realistic stress predictions.

1.
Advani
,
S. G.
and
C. L.
Tucker
, “
Closure approximations for three-dimensional structure tensors
,”
J. Rheol.
34
,
367
386
(
1990
).
2.
Baek
,
S. G.
,
J. J.
Magda
, and
R. G.
Larson
, “
Rheological differences among liquid-crystalline polymers. 1. The 1st and 2nd normal stress differences of PBG solutions
,”
J. Rheol.
37
,
1201
1224
(
1993
).
3.
Burghardt
,
W. R.
, “
Molecular orientation and rheology in sheared lyotropic liquid crystalline polymers
,”
Macromol. Chem. Phys.
199
,
471
488
(
1998
).
4.
Burghardt
,
W. R.
and
G. G.
Fuller
, “
Role of director tumbling in the rheology of polymer liquid crystal solutions
,”
Macromolecules
24
,
2546
2555
(
1991
).
5.
Burghardt
,
W. R.
and
K.
Hongladarom
, “
Texture refinement in a sheared liquid crystalline polymer
,”
Macromolecules
27
,
2327
2329
(
1994
).
6.
Caputo
,
F. E.
,
W. R.
Burghardt
, and
J. F.
Berret
, “
Tumbling dynamics in a nematic surfactant solution in transient shear flows
,”
J. Rheol.
43
,
765
779
(
1999
).
7.
Chang
,
S.
and
C. D.
Han
, “
A thermotropic main-chain random copolyester containing flexible spacers of differing lengths, 2. Rheological behavior
,”
Macromolecules
30
,
1656
1669
(
1997
).
8.
Chaubal
,
C. V.
and
L. G.
Leal
, “
A closure approximation for liquid-crystalline polymer models based on parametric density estimation
,”
J. Rheol.
42
,
177
201
(
1998
).
9.
Cinader
, Jr.,
D. K.
and
W. R.
Burghardt
, “
Polydomain model predictions of liquid crystalline polymer orientation in mixed shear/extensional channel flows
,”
Rheol. Acta
39
,
259
270
(
2000
).
10.
Cintra
,
J. S.
and
C. L.
Tucker
, “
Orthotropic closure approximations for flow-induced fiber orientation
,”
J. Rheol.
39
,
1096
1122
(
1995
).
11.
Cocchini
,
F.
,
M. R.
Nobile
, and
D.
Acierno
, “
Transient and steady rheological behavior of the thermotropic liquid-crystal copolymer 73/27 HBA/HNA
,”
J. Rheol.
35
,
1171
1189
(
1991
).
12.
Dadmun
,
M. D.
,
S.
Clingman
,
C. K.
Ober
, and
A. I.
Nakatani
, “
Flow-induced structure in a thermotropic liquid crystalline polymer as studied by SANS
,”
J. Polym. Sci., Part B: Polym. Phys.
36
,
3017
3023
(
1998
).
13.
Doi
,
M.
, “
Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases
,”
J. Polym. Sci., Polym. Phys. Ed.
19
,
229
243
(
1981
).
14.
Driscoll
,
P.
,
T.
Masuda
, and
K.
Fujiwara
, “
Rheological properties of a homogeneous thermotropic liquid-crystalline polyester: Dynamic viscoelastic and interrupted-flow measurements
,”
Macromolecules
24
,
1567
1574
(
1991
).
15.
Feng
,
J. J.
,
G.
Sgalari
, and
L. G.
Leal
, “
A theory for flowing nematic polymers with orientational distortion
,”
J. Rheol.
44
,
1085
1101
(
2000
).
16.
Gillmor
,
J. R.
,
R. H.
Colby
,
E.
Hall
, and
C. K.
Ober
, “
Viscoelastic properties of a model main-chain liquid crystalline polymer
,”
J. Rheol.
38
,
1623
1638
(
1994
).
17.
Grizzuti
,
N.
,
S.
Cavella
, and
P.
Cicarelli
, “
Transient and steady-state rheology of a liquid crystalline hydroxypropylcellulose solution
,”
J. Rheol.
34
,
1293
1310
(
1990
).
18.
Guskey
,
S. M.
and
H. H.
Winter
, “
Transient shear behavior of a thermotropic liquid-crystalline polymer in the nematic state
,”
J. Rheol.
35
,
1191
1207
(
1991
).
19.
Hall
,
E.
,
C. K.
Ober
,
E. J.
Kramer
,
R. H.
Colby
, and
J. R.
Gillmor
, “
Diffusion and melt viscosity of a main-chain liquid-crystalline polyether
,”
Macromolecules
26
,
3764
3771
(
1993
).
20.
Hall
,
E. E.
,
A. A.
Robinson
,
S. G.
McNamee
,
C. K.
Ober
, and
Y. S.
Freidzon
, “
Nematic-smectic biphase of a main-chain liquid-crystalline polyether
,”
J. Mater. Sci.
30
,
2023
2028
(
1995
).
21.
Han
,
C. D.
,
V. M.
Ugaz
, and
W. R.
Burghardt
, “
Shear stress overshoots in flow inception of semiflexible thermotropic liquid crystalline polymers: Experimental test of a parameter-free model prediction
,”
Macromolecules
34
,
3642
3645
(
2001
).
22.
Hongladarom
,
K.
and
W. R.
Burghardt
, “
Molecular alignment of polymer liquid-crystals in shear flows. 2. Transient flow behavior in poly(benzyl glutamate) solutions
,”
Macromolecules
26
,
785
794
(
1993
).
23.
Hongladarom
,
K.
,
V.
Secakusuma
, and
W. R.
Burghardt
, “
Relation between molecular orientation and rheology in lyotropic hydroxypropylcellulose solutions
,”
J. Rheol.
38
,
1505
1523
(
1994
).
24.
Hongladarom
,
K.
et al., “
Birefringence, x-ray scattering and neutron scattering measurements of molecular orientation in sheared liquid crystal polymer solutions
,”
Macromolecules
29
,
5346
5355
(
1996
).
25.
Huang
,
C. M.
,
J. J.
Magda
, and
R. G.
Larson
, “
The effect of temperature and concentration on N1 and tumbling in a liquid crystal polymer
,”
J. Rheol.
43
,
31
50
(
1999
).
26.
Jeffrey
,
G. B.
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
102
,
161
179
(
1922
).
27.
Kawaguchi
,
M. N.
and
M. M.
Denn
, “
A mesoscopic theory of liquid crystalline polymers
,”
J. Rheol.
43
,
111
124
(
1999
).
28.
Kupferman
,
R.
,
M. N.
Kawaguchi
, and
M. M.
Denn
, “
Emergence of structure in a model of liquid crystalline polymers with elastic coupling
,”
J. Non-Newtonian Fluid Mech.
91
,
255
271
(
2000
).
29.
Kim
,
D.-O.
,
C. D.
Han
, and
P. T.
Mather
, “
Optical and mechanical rheometry of semiflexible main-chain thermotropic liquid-crystalline polymers with varying pendant groups
,”
Macromolecules
33
,
7922
7930
(
2000
).
30.
Kim
,
S. S.
and
C. D.
Han
, “
Transient rheological behavior of a thermotropic liquid-crystalline polymer. 1. The startup of shear flow
,”
J. Rheol.
37
,
847
866
(
1993
).
31.
Kiss
,
G.
and
R. S.
Porter
, “
Rheology of concentrated solutions of helical polypeptides
,”
J. Polym. Sci., Polym. Phys. Ed.
18
,
361
388
(
1980
).
32.
Larson, R. G., The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).
33.
Larson
,
R. G.
and
M.
Doi
, “
Mesoscopic domain theory for textured liquid-crystalline polymers
,”
J. Rheol.
35
,
539
563
(
1991
).
34.
Larson
,
R. G.
and
D. W.
Mead
, “
Time and shear rate scaling laws for liquid-crystal polymers
,”
J. Rheol.
33
,
1254
1281
(
1989
).
35.
Larson
,
R. G.
and
D. W.
Mead
, “
Development of orientation and texture during shearing of liquid-crystalline polymers
,”
Liq. Cryst.
12
,
751
768
(
1992
).
36.
Leal
,
L. G.
and
E. J.
Hinch
, “
Theoretical studies of a suspension of rigid particles affected by Brownian couples
,”
Rheol. Acta
12
,
127
132
(
1973
).
37.
Leslie
,
F. M.
, “
Theory of flow phenomena in liquid crystals
,”
Adv. Liq. Cryst.
4
,
1
81
(
1979
).
38.
Li
,
M. H.
,
A.
Brulet
,
P.
Davidson
,
P.
Keller
, and
J. P.
Cotton
, “
Observation of hairpin defects in a nematic main-chain polyester
,”
Phys. Rev. Lett.
70
,
2297
2300
(
1993
).
39.
Long
,
D.
and
D. C.
Morse
, “
Linear viscoelasticity and director dynamics of nematic liquid crystalline polymer melts
,”
Europhys. Lett.
49
,
255
261
(
2000
).
40.
Maffettone
,
P. L.
and
G.
Marrucci
, “
The nematic dumbbell model
,”
J. Rheol.
36
,
1547
1561
(
1992
).
41.
Marrucci
,
G.
, “
Prediction of Leslie coefficients for rodlike polymer nematics
,”
Mol. Cryst. Liq. Cryst.
72
,
153
161
(
1982
).
42.
Marrucci
,
G.
and
P. L.
Maffettone
, “
Nematic phase of rodlike polymers. II. Polydomain predictions in the tumbling regime
,”
J. Rheol.
34
,
1231
1244
(
1990
).
43.
Mather
,
P. T.
,
D. S.
Pearson
, and
R. G.
Larson
, “
Flow patterns and disclination-density measurements in sheared nematic liquid crystals. 2. Tumbling 8CB
,”
Liq. Cryst.
20
,
539
550
(
1996
).
44.
Mather
,
P. T.
,
H. G.
Jeon
,
C. D.
Han
, and
S.
Chang
, “
Morphological and rheological responses to shear startup and flow reversal of thermotropic liquid-crystalline polymers
,”
Macromolecules
33
,
7594
7608
(
2000
).
45.
Minale
,
M.
,
P.
Moldenaers
, and
J.
Mewis
, “
Transient flow experiments in a model immiscible polymer blend
,”
J. Rheol.
43
,
815
827
(
1999
).
46.
Mitchell, G. R. and A. H. Windle, “Orientation in liquid crystal polymers,” in Developments in Semicrystalline Polymers—2, edited by D. C. Bassett (Elsevier, London, 1988), pp. 115–175.
47.
Moldenaers
,
P.
and
J.
Mewis
, “
Transient behavior of liquid crystalline solutions of poly(benzyl glutamate)
,”
J. Rheol.
30
,
567
584
(
1986
).
48.
Rey
,
A. D.
and
T.
Tsuju
, “
Recent advances in theoretical liquid crystal rheology
,”
Macromol. Theory Simul.
7
,
623
639
(
1998
).
49.
Semenov
,
A. N.
, “
Rheological properties of a nematic solution of semiflexible macromolecules
,”
Sov. Phys. JETP
66
,
712
716
(
1987
).
50.
Srinivasarao
,
M.
and
G. C.
Berry
, “
Rheo-optical studies on aligned nematic solutions of a rodlike polymer
,”
J. Rheol.
35
,
379
397
(
1991
).
51.
Srinivasarao
,
M.
,
R. O.
Garay
,
H. H.
Winter
, and
R. S.
Stein
, “
Rheo-optical properties of a thermotropic liquid-crystalline polymer
,”
Mol. Cryst. Liq. Cryst.
223
,
29
39
(
1992
).
52.
Thiele
,
T.
,
J.-F.
Berret
,
S.
Müller
, and
C.
Schmidt
, “
Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water nematics
,”
J. Rheol.
45
,
29
48
(
2001
).
53.
Ugaz, V. M. “Investigation of the effect of shear flow on molecular orientation in model thermotropic liquid crystalline polymers using in situ x-ray scattering,” Ph.D. thesis, Northwestern University, 1999.
54.
Ugaz
,
V. M.
and
W. R.
Burghardt
, “
In-situ x-ray scattering study of a model thermotropic copolyester under shear: Evidence and consequences of flow-aligning behavior
,”
Macromolecules
31
,
8474
8484
(
1998
).
55.
Vermant
,
J.
,
P.
Moldenaers
,
S. J.
Picken
, and
J.
Mewis
, “
A comparison between texture and rheological behavior of lyotropic liquid-crystalline polymers during flow
,”
J. Non-Newtonian Fluid Mech.
53
,
1
23
(
1994
).
56.
Zhou
,
W.
,
J. A.
Kornfield
,
V. M.
Ugaz
,
W. R.
Burghardt
,
D. R.
Link
, and
N. A.
Clark
, “
Dynamics and shear orientation behavior of a main-chain thermotropic liquid crystalline polymer
,”
Macromolecules
32
,
5581
5593
(
1999
).
57.
Zhou
,
W.
,
J. A.
Kornfield
, and
W. R.
Burghardt
, “
Shear aligning properties of a main chain thermotropic liquid crystalline polymer
,”
Macromolecules
34
,
3654
3660
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.