We developed a capillary rheo-optics technique to visualize how fluoropolymer polymer processing additives (PPA) eliminate a surface distortion called “sharkskin” in the extrudate of linear low-density polyethylene (LLDPE). The measurements were carried out in a transparent sapphire tube located at the exit of a twin-screw extruder. Depth-resolved optical microscopy was used to measure both the polymer velocity profiles and to image the coating process of the PPA onto the capillary wall. In the absence of PPA, no slippage occurs between the capillary wall and the polyethylene; sharkskin was observed at all flow rates. Upon addition of the PPA to the LLDPE, the PPA migrates to the capillary wall where it sticks and induces slippage between itself and the LLDPE, concomitant with the elimination of sharkskin. The interface between the PPA and LLDPE is characterized by long stripes in the flow direction. Large values of the polymer–polymer slippage parameter were found which indicate that the fluoropolymer and LLDPE are fully disentangled at their interface. The PPA acts by dramatically reducing the extensional deformation of the LLDPE at the exit surface.

1.
Ajdari
,
A.
, “
Slippage at a polymer–polymer interface—Entanglements and associated friction
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
317
,
1159
1163
(
1993
).
2.
Amos, S. E., G. M. Giacoletto, J. H. Horns, C. Lavallée, and S. S. Woods, “Polymer processing aids (PPA),” in Plastic Additives (Hanser, New York, 2001), pp. 553–584.
3.
Barone
,
J. R.
,
N.
Plucktaveesak
, and
S. Q.
Wang
, “
Interfacial molecular instability mechanism for sharkskin phenomenon in capillary extrusion of linear polyethylenes
,”
J. Rheol.
42
,
813
832
(
1998
).
4.
Barone
,
J. R.
and
S. Q.
Wang
, “
Rheo-optical observations of sharkskin formation in slit-die extrusion
,”
J. Rheol.
45
,
49
60
(
2001
).
5.
Brochard-Wyart
,
F.
, “
Slippage at the interface between two slightly incompatible polymers
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
310
,
1169
1173
(
1990
).
6.
Brochard-Wyart
,
F.
,
P. G.
De Gennes
, and
P.
Pincus
, “
Suppression of sliding at the interface between incompatible polymer melts
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
314
,
873
878
(
1992
).
7.
Brochard-Wyart
,
F.
and
P. G.
De Gennes
, “
Sliding molecules at a polymer–polymer interface
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
317
,
13
17
(
1993
).
8.
Brooks, R. V., J. E. Briddell, R. L. Fuller, and K. E. Newman, “Flow contamination tester,” Eastman Chemical Company, U.S., Patent No. 5,790,249 (1998).
9.
Chan
,
C. M.
and
J. Y.
Feng
, “
Mechanisms for viscosity reduction of polymer blends: Blends of fluoroelastomer and high-density polyethylene
,”
J. Rheol.
41
,
319
333
(
1997
).
10.
Cogswell
,
F. N.
, “
Stretching flow instabilities at the exits of extrusion dies
,”
J. Non-Newtonian Fluid Mech.
2
,
37
47
(
1977
).
11.
den Otter
,
J. L.
, “
Mechanisms of melt fracture
,”
Plast. Polym.
38
,
155
168
(
1970
).
12.
Denn
,
M. M.
, “
Extrusion instabilities and wall slip
,”
Annu. Rev. Fluid Mech.
33
,
265
297
(
2001
).
13.
Durliat
,
E.
,
H.
Hervet
, and
L.
Leger
, “
Influence of grafting density on wall slip of a polymer melt on a polymer brush
,”
Europhys. Lett.
38
,
383
388
(
1997
).
14.
El Kissi
,
N.
and
J. M.
Piau
, “
Adhesion of linear low-density polyethylene for flow regimes with sharkskin
,”
J. Rheol.
38
,
1447
1463
(
1994
).
15.
El Kissi
,
N.
,
J. M.
Piau
, and
F.
Toussaint
, “
Sharkskin and cracking of polymer melt extrudates
,”
J. Non-Newtonian Fluid Mech.
68
,
271
290
(
1997
).
16.
Ghanta
,
V. G.
,
B. L.
Riise
, and
M. M.
Denn
, “
Disappearance of extrusion instabilities in brass capillary dies
,”
J. Rheol.
43
,
435
442
(
1999
).
17.
Goveas
,
J. L.
and
G. H.
Fredrickson
, “
Apparent slip at a polymer–polymer interface
,”
Eur. Phys. J. B
2
,
79
92
(
1998
).
18.
Hatzikiriakos
,
S. G.
and
J. M.
Dealy
, “
Wall slip of molten high-density polyethylene 1. Sliding plate rheometer studies
,”
J. Rheol.
35
,
497
523
(
1991
).
19.
Hobbie
,
E. K.
and
K. B.
Migler
, “
Vorticity elongation in polymeric emulsions
,”
Phys. Rev. Lett.
82
,
5393
5396
(
1999
).
20.
Horns
,
J.
, “
The influence of using fluoropolymer processing additives to improve the extrusion characteristics of LDPE/LLDPE resin blends
,”
SPE ANTEC Tech. Papers
43
,
64
69
(
1997
).
21.
Howells
,
E. R.
and
J. J.
Benbow
, “
Flow defects in polymer melts
,”
Trans. Plast. Inst.
30
,
246
253
(
1960
).
22.
Inn
,
Y. W.
,
R. J.
Fischer
, and
M. T.
Shaw
, “
Visual observation of development of sharkskin melt fracture in polybutadiene extrusion
,”
Rheol. Acta
37
,
573
582
(
1998
).
23.
Inn
,
Y. W.
,
L. S.
Wang
, and
M. T.
Shaw
, “
Efforts to find stick–slip flow in the land of a die under sharkskin melt fracture conditions: Polybutadiene
,”
Macromol. Symp.
158
,
65
75
(
2000
).
24.
Li
,
S.
,
K. B.
Migler
,
E. K.
Hobbie
,
H.
Kramer
,
C. C.
Han
, and
E. J.
Amis
, “
Light-scattering photometer with optical microscope for the in-line study of polymer extrusion
,”
J. Polym. Sci., Part B: Polym. Phys.
35
,
2935
2943
(
1997
).
25.
Lo
,
H. H. K.
,
C. M.
Chan
, and
S. H.
Zhu
, “
Characterization of the lubricant layer formed at the interface between the extrudate and the die wall during the extrusion of high-density polyethylene and fluoroelastomer blends by XPS, SIMS, and SEM
,”
Polym. Eng. Sci.
39
,
721
732
(
1999
).
26.
Lyngaae-Jorgensen
,
J.
, “
On the influence of interfacial slip on melt flow properties of polymer blends
,”
Int. Polym. Process.
II
,
123
130
(
1988
).
27.
Mackley
,
M. R.
,
R. P. G.
Rutgers
, and
D. G.
Gilbert
, “
Surface instabilities during the extrusion of linear low-density polyethylene
,”
J. Non-Newtonian Fluid Mech.
76
,
281
297
(
1998
).
28.
Massey
,
G.
,
H.
Hervet
, and
L.
Leger
, “
Investigation of the slip transition at the melt polymer interface
,”
Europhys. Lett.
43
,
83
88
(
1998
).
29.
Migler
,
K. B.
,
H.
Hervet
, and
L.
Leger
, “
Slip transition of a polymer melt under shear-stress
,”
Phys. Rev. Lett.
70
,
287
290
(
1993
).
30.
Migler
,
K. B.
,
C. L.
Gettinger
,
V. P.
Thalacker
, and
R.
Conway
, “
Direct measurement of slippage induced by a polymer processing additive
,”
SPE ANTEC Tech. Papers
45
,
3128
3131
(
1999
).
31.
Migler
,
K. B.
,
E. K.
Hobbie
, and
F.
Qiao
, “
In-line study of droplet deformation in polymer blends in channel flow
,”
Polym. Eng. Sci.
39
,
2282
2291
(
1999b
).
32.
Munstedt
,
H.
,
M.
Schmidt
, and
E.
Wassner
, “
Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-Doppler velocimetry
,”
J. Rheol.
44
,
413
428
(
2000
).
33.
Nam
,
S.
, “
Mechanism of fluoroelastomer processing aid in extrusion of LLDPE
,”
Int. Polym. Process.
I
,
98
101
(
1987
).
34.
Piau
,
J. M.
,
N.
El Kissi
, and
A.
Mezghani
, “
Slip-flow of polybutadiene through fluorinated dies
,”
J. Non-Newtonian Fluid Mech.
59
,
11
30
(
1995
).
35.
Ramamurthy
,
A. V.
, “
Wall slip in viscous fluids and influence of materials of construction
,”
J. Rheol.
30
,
337
357
(
1986
).
36.
Tremblay
,
B.
, “
Sharkskin defects of polymer melts—The role of cohesion and adhesion
,”
J. Rheol.
35
,
985
998
(
1991
).
37.
Woods, S. S. and S. E. Amos, “The use of polymer processing aids to reduce gel formation in polyolefin plastomer extrusion,” in Proceedings of the TAPPI Laminations and Coatings Conference (Tappi Press, 1998), pp. 675–685 (unpublished).
This content is only available via PDF.
You do not currently have access to this content.