We report on the nonlinear rheology of aqueous solutions of telechelic associating polymers in the network regime. Different telechelic polymers with a poly(ethylene oxide) middle chain and semiperfluorinated end caps C8F17(CH2)11 were synthesized and characterized with respect to their functionalization. At a telechelic concentration c=4%, the aqueous solutions studied are highly viscoelastic and close to Maxwellian fluids. Due to the strong hydrophobicity of the end caps, the network relaxation time can be very long compared to that of polymers with fully hydrogenated hydrophobes. We have exploited these long relaxation times to explore the time-resolved stress responses obtained in start-up experiments. The steady shear stress versus shear rate curves exhibit two main and stable branches separated by a discontinuity. The first branch of the flow curve is Newtonian and shear thickening, whereas the second branch is shear thinning. At the onset of shear thickening, we show that the viscosity increase is related to the hardening of the network, i.e., to an increase of the effective elastic modulus. In the shear-thinning branch, extremely slow transients are observed and the steady state is reached for deformations as large as several hundreds of strain units. It is suggested that these slow relaxations, as well as the discontinuity in the shear stress, are the signatures of the onset of an inhomogeneous flow resulting from the breakdown or rupture of the network.

1.
Annable
,
T.
,
R.
Buscall
,
R.
Ettelaie
, and
D.
Whittlestone
, “
The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory
,”
J. Rheol.
37
,
695
726
(
1993
).
2.
Berret
,
J.-F.
, “
Transient rheology of wormlike micelles
,”
Langmuir
13
,
2227
2234
(
1997
).
3.
Berret
,
J.-F.
and
G.
Porte
, “
Metastable versus unstable transients at the onset of shear-induced phase transition
,”
Phys. Rev. E
60
,
4268
4271
(
1999
).
4.
Berret
,
J.-F.
,
D. C.
Roux
, and
G.
Porte
, “
Isotropic to nematic transition in wormlike micelles under shear
,”
J. Phys. II
4
,
1261
1279
(
1994
).
5.
Cathébras
,
N.
,
A.
Collet
,
M.
Viguier
, and
J.-F.
Berret
, “
Synthesis and linear viscoelasticity of fluorinated hydrophobically modified ethoxylated urethanes (F-HEUR)
,”
Macromolecules
31
,
1305
1311
(
1998
).
6.
Grand
,
C.
,
J.
Arrault
, and
M. E.
Cates
, “
Slow transients and metastability in wormlike micelle rheology
,”
J. Phys. II
7
,
1071
1086
(
1997
).
7.
Groot
,
R. D.
and
G. M.
Agterof
, “
Dynamic viscoselastic modulus of associative polymer networks: Off-lattice simulations, theory, and comparison to experiments
,”
Macromolecules
28
,
6284
6295
(
1995
).
8.
Hartmann
,
P.
,
A.
Collet
, and
M.
Viguier
, “
Synthesis and characterization of model fluoroacylated poly(ethylene oxide)
,”
J. Fluorine Chem.
95
,
145
151
(
1999
).
9.
Herrmann, H. J. and S. Roux, Statistical Models for the Fracture of Disordered Media, edited by H. E. Stanley and E. Guyon (NHC, Amsterdam, 1990).
10.
Kaczmarski
,
J. P.
and
J. E.
Glass
, “
Synthesis and solutions properties of hydrophobically modified ethoxylated urethanes with variable oxyethylene spacer lengths
,”
Macromolecules
26
,
5149
5156
(
1993
).
11.
Khalatur
,
P. G.
,
A. R.
Khokhlov
, and
D. A.
Mologin
, “
Simulation of self-associating polymer systems. I. Shear-induced structural changes
,”
J. Chem. Phys.
109
,
9602
9613
(
1998
).
12.
Larson, R. G., in Constitutive Equations for Polymer Melts and Solutions, Butterworths Series in Chemical Engineering, edited by H. Brenner (Butterworths, Boston, MA, 1988).
13.
Lerouge
,
S.
,
J.-P.
Decruppe
, and
J.-F.
Berret
, “
Correlations between rheological and optical properties of a micellar solution under shear banding flow
,”
Langmuir
16
,
6464
6474
(
2000
).
14.
Lodge
,
A. S.
, “
Constitutive equations from molecular network theories for polymer solutions
,”
Rheol. Acta
7
,
379
392
(
1968
).
15.
Marrucci
,
G.
,
S.
Bhargava
, and
S. L.
Cooper
, “
Model of shear-thickeing behavior in physically cross-linked networks
,”
Macromolecules
26
,
6483
6488
(
1993
).
16.
Pham
,
Q. T.
,
W. B.
Russel
,
J. C.
Thibeault
, and
W.
Lau
, “
Micellar solutions of associative triblock copolymers: Entropic attraction and gas–liquid transition
,”
Macromolecules
32
,
2996
3005
(
1999a
).
17.
Pham
,
Q. T.
,
W. B.
Russel
,
J. C.
Thibeault
, and
W.
Lau
, “
Micellar solutions of associative triblock copolymers: The relationship between structure and rheology
,”
Macromolecules
32
,
5139
5146
(
1999b
).
18.
Semenov
,
A. N.
,
J.-F.
Joanny
, and
A. R.
Khokhlov
, “
Associating polymers: Equilibrium and linear viscoelasticity
,”
Macromolecules
28
,
1066
1075
(
1995
).
19.
Séréro
,
Y.
,
R.
Aznar
,
G.
Porte
,
J.-F.
Berret
,
D.
Calvet
,
A.
Collet
, and
M.
Viguier
, “
Associating polymers: From “flowers” to a transient network
,”
Phys. Rev. Lett.
81
,
5584
5587
(
1998
).
20.
Séréro
,
Y.
,
V.
Jacobsen
,
J.-F.
Berret
, and
R.
May
, “
Evidence of nonlinear chain stretching in the rheology of transient networks
,”
Macromolecules
33
,
1841
1847
(
2000
).
21.
Tam
,
K. C.
,
R. D.
Jenkins
,
M. A.
Winnik
, and
D. R.
Bassett
, “
A structural model of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in shear flows
,”
Macromolecules
31
,
4149
4159
(
1998
).
22.
Tanaka
,
F.
and
S. F.
Edwards
, “
Viscoelastic properties of physically cross-linked networks
,”
J. Non-Newtonian Fluid Mech.
43
,
247
309
(
1992
).
23.
Vaccaro
,
A.
and
G.
Marrucci
, “
A model for the nonlinear rheology of associating polymers
,”
J. Non-Newtonian Fluid Mech.
92
,
261
271
(
2000
).
24.
van der Brule
,
B. H. A. A.
and
P. J.
Hoogerbrugge
, “
Brownian dynamics simulation of reversible polymeric networks
,”
J. Non-Newtonian Fluid Mech.
60
,
303
334
(
1995
).
25.
Vrahopoulou
,
E. P.
and
A. J.
McHugh
, “
A consideration of the Yamamoto network theory with non-Gaussian chain segments
,”
J. Rheol.
31
,
371
384
(
1987
).
26.
Wang
,
S.-Q.
, “
Transient network theory for shear-tickening fluids and physically cross-linked systems
,”
Macromolecules
25
,
7003
7010
(
1992
).
27.
Winnik
,
M. A.
and
A.
Yekta
, “
Associative polymers in aqueous solution
,”
Curr. Opin. Colloid Interface Sci.
2
,
424
436
(
1997
).
28.
Witten
,
T. A.
, “
Associating polymers and shear thickening
,”
J. Phys. (France)
49
,
1055
1063
(
1988
).
29.
Xu
,
B.
,
L.
Li
,
A.
Yekta
,
Z.
Masoumi
,
S.
Kanagalingam
,
M. A.
Winnik
,
K.
Zhang
,
P.
Macdonald
, and
S.
Menchen
, “
Synthesis, characterization, and rheological behavior of polyethylene glycols end capped with fluorocaron hydrophobes
,”
Langmuir
13
,
2447
2456
(
1997
).
30.
Xu
,
B.
,
A.
Yekta
,
L.
Li
,
Z.
Masoumi
, and
M. A.
Winnik
, “
The functionality of associative polymer networks: The association behavior of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in aqueous solution
,”
Colloids Surf., A
112
,
239
250
(
1996
).
31.
Yamamoto
,
M.
, “
The viscoelastic properties of network structure. I. General formalism
,”
J. Phys. Soc. Jpn.
11
,
413
421
(
1956
).
This content is only available via PDF.
You do not currently have access to this content.