The traditional technique for the experimental characterization of the shear stress relaxation modulus by applying a step shear strain was investigated using flow visualization. A high-speed camera was employed in conjunction with cone-and-plate and parallel-disk fixtures of a Rheometric Scientific Advanced Rheometric Expansion System rheometer. In the nonlinear region the true shear strain imposed on a polyethylene melt deviates considerably from the targeted strain. The main source of the deviation is the wall slip of the polymer melt. The presence of wall slip reduces significantly the range of strains for which the strain-dependent relaxation modulus can be determined for the linear polyethylene melt. Errors associated with the control of the motion of the tool which introduces the shear strain are also documented.

1.
Aral
,
B. K.
and
D. M.
Kalyon
, “
Effects of temperature and surface roughness on time-dependent development of wall slip in steady torsional flow of concentrated suspensions
,”
J. Rheol.
38
,
957
972
(
1994
).
2.
Archer
,
L. A.
,
Y.-L.
Chen
, and
R. G.
Larson
, “
Delayed slip after step strains in highly entangled polystyrene solutions
,”
J. Rheol.
39
,
519
525
(
1995
).
3.
Doi
,
M.
and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. Part 2. Molecular motion under flow
,”
J. Chem. Soc., Faraday Trans. 2
74
,
1802
1817
(
1978
).
4.
Einaga
,
Y.
,
K.
Osaki
,
M.
Kurata
,
S.
Kimura
, and
M.
Tamura
, “
Stress relaxation of polymer solutions under large strain
,”
Polym. J. (Tokyo)
2
,
550
552
(
1971
).
5.
Kalyon
,
D. M.
,
D.
Yu
, and
J.
Yu
, “
Melt rheology of two engineering thermoplastics: Poly(ether imide) and Poly(2,6-dimethyl-1,4-phenylene ether)
,”
J. Rheol.
32
,
789
811
(
1988
).
6.
Kalyon
,
D. M.
,
P.
Yaras
,
B.
Aral
, and
U.
Yilmazer
, “
Rheological behavior of a concentrated suspension: A solid rocket fuel simulant
,”
J. Rheol.
37
,
35
53
(
1993
).
7.
Larson
,
R. G.
, “
Nonlinear shear relaxation modulus for a linear low-density polyethylene
,”
J. Rheol.
29
,
823
831
(
1985
).
8.
Larson, R. G., Constitutive Equations for Polymer Melts and Solutions (Butterworths, Stoneham, MA, 1988).
9.
Laun
,
H. M.
, “
Description of the nonlinear shear behavior of a low-density polyethylene melt by means of an experimentally determined strain-dependent memory function
,”
Rheol. Acta
17
,
1
15
(
1978
).
10.
Lodge
,
A. S.
, “
Stress relaxation after a sudden shear strain
,”
Rheol. Acta
14
,
664
665
(
1975
).
11.
Mhetar
,
V. R.
and
L. A.
Archer
, “
Slip in entangled polymer solutions
,”
Macromolecules
31
,
6639
6649
(
1998
).
12.
Nazem
,
F.
and
M. G.
Hansen
, “
Stress growth and relaxation of a molten polyethylene in a modified Weissenberg rheogoniometer
,”
J. Appl. Polym. Sci.
20
,
1355
1370
(
1976
).
13.
Osaki, K., in Proceedings of the Seventh International Congress on Rheology, edited by C. Klason and J. Kubat (Tages Anzeiger, Gotenburg, 1976), pp. 104–109.
14.
Papanastasiou
,
A. C.
,
L. E.
Scriven
, and
C. W.
Macosko
, “
An integral constitutive equation for mixed flows: Viscoelastic characterization
,”
J. Rheol.
27
,
387
410
(
1983
).
15.
Soskey
,
P. R.
and
H. H.
Winter
, “
Large step shear strain experiments with parallel-disk rotational rheometers
,”
J. Rheol.
28
,
625
645
(
1984
).
16.
Vrentas
,
C. M.
and
W. W.
Graessley
, “
Study of shear stress relaxation in well-characterized polymer liquids
,”
J. Rheol.
26
,
359
371
(
1982
).
17.
Wagner
,
M. H.
, “
Analysis of time-dependent nonlinear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt
,”
Rheol. Acta
15
,
136
142
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.