The rheological properties of dilute polymer solutions in exponential shear, uniaxial, and planar extensional flows are compared using Brownian dynamics simulations of both freely draining, flexible bead-rod and bead-spring chains. We introduce a novel stress function for exponential shear which uses the extinction angle χ to take into account the orientation of the chain as it aligns in the flow. Comparing this new stress function during startup and relaxation in exponential shear with τ11−τ22 in planar extensional flow and τ11122233) in uniaxial extensional flow, we find that for both models there is a quantitative agreement among the three different flows over a large range of Wi, strain, and chain length. Furthermore, the distributions of maximum extension show a microstructural equivalence between ensembles of chains in all three flows up to strains of 3 or 4 at all values of Wi simulated. Finally, we show three comparisons between experiment and simulation of the various flows: (a) simulations and exponential shear experiments of a polyisobutylene/polybutene Boger fluid, (b) simulations and uniaxial extension data from literature, and (c) exponential shear and planar extensional data of a low-density polyethylene melt from literature.

1.
Astarita
,
G.
, “
Objective and generally applicable criteria for flow classification
,”
J. Non-Newtonian Fluid Mech.
6
,
69
76
(
1979
).
2.
Babcock
,
H. P.
,
D. E.
Smith
,
J. S.
Hur
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Relating the microscopic and macroscopic response of a polymeric fluid in a shearing flow
,”
Phys. Rev. Lett.
85
,
2018
2021
(
2000
).
3.
Bird, R. B., C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids: Kinetic Theory (Wiley, New York, 1987), Vol. 2.
4.
Dealy, J. M. and K. F. Wissbrun, Melt Rheology and Its Role in Plastics Processing (Van Nostrand Reinhold, New York, 1990).
5.
DeGennes
,
P. G.
, “
Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients
,”
J. Chem. Phys.
60
,
5030
5042
(
1974
).
6.
Denson
,
C. D.
and
D. L.
Crady
, “
Measurements on planar extensional viscosity of bulk polymers: inflation of a thin, rectangular polymer sheet
,”
J. Appl. Polym. Sci.
18
,
1611
1617
(
1974
).
7.
Denson
,
C. D.
and
D. C.
Hylton
, “
A rheometer for measuring the viscoelastic response of polymer melts in arbitrary planar and biaxial extensional flow fields
,”
Polym. Eng. Sci.
20
,
535
539
(
1980
).
8.
Dontula
,
P.
,
M.
Pasquali
,
L. E.
Scriven
, and
C. W.
Macosko
, “
Can extensional viscosity be measured by opposed-nozzle devices?
,”
Rheol. Acta
36
,
429
448
(
1997
).
9.
Doshi
,
S. R.
and
J. M.
Dealy
, “
Exponential shear: A strong flow
,”
J. Rheol.
31
,
563
582
(
1987
).
10.
Doyle
,
P. S.
and
E. S. G.
Shaqfeh
, “
Dynamic simulation of freely-draining, flexible bead-rod chains: Startup of extensional and shear flow
,”
J. Non-Newtonian Fluid Mech.
76
,
43
78
(
1998
).
11.
Doyle
,
P. S.
,
E. S. G.
Shaqfeh
, and
A. P.
Gast
, “
Dynamic simulation of freely-draining, flexible polymers in steady linear flows
,”
J. Fluid Mech.
334
,
251
291
(
1997b
).
12.
Doyle
,
P. S.
,
E. S. G.
Shaqfeh
,
G. H.
McKinley
, and
S. H.
Spiegelberg
, “
Relaxation of dilute polymer solutions following extensional flow
,”
J. Non-Newtonian Fluid Mech.
76
,
79
110
(
1998
).
13.
Dunlap
,
P. N.
and
L. G.
Leal
, “
Dilute polystyrene solutions in extensional flows: Birefringence and flow modification
,”
J. Non-Newtonian Fluid Mech.
23
,
5
48
(
1987
).
14.
Fuller
,
G. G.
and
L. G.
Leal
, “
Flow birefringence of dilute polymer solutions in two-dimensional flows
,”
Rheol. Acta
19
,
580
600
(
1980
).
15.
Fuller
,
G. G.
and
L. G.
Leal
, “
Flow birefringence of concentrated polymer solutions in two-dimensional flows
,”
J. Polym. Sci.
19
,
557
587
(
1981
).
16.
Grassia
,
P.
and
E. J.
Hinch
, “
Computer simulations of polymer chain relaxation via Brownian motion
,”
J. Fluid Mech.
308
,
255
288
(
1996
).
17.
Hassager
,
O.
, “
Kinetic-theory and rheology of bead-rod models for macromolecular solutions. 1. Equilibrium and steady flow properties
,”
J. Chem. Phys.
60
,
2111
2124
(
1974
).
18.
Higdon
,
J. J. L.
, “
The kinematics of the four-roll mill
,”
Phys. Fluids A
5
,
274
276
(
1993
).
19.
Hinch
,
E. J.
, “
Uncoiling a polymer molecule in a strong extensional flow
,”
J. Non-Newtonian Fluid Mech.
54
,
209
230
(
1994
).
20.
Hur
,
J. S.
,
E. S. G.
Shaqfeh
, and
R. G.
Larson
, “
Brownian dynamics simulations of single DNA molecules in shear flow
,”
J. Rheol.
44
,
713
742
(
2000
).
21.
Keller
,
A.
and
J. A.
Odell
, “
The extensibillity of macromolecules in solution: a new focus for macromolecular science
,”
Colloid Polym. Sci.
263
,
181
201
(
1985
).
22.
King
,
D. H.
and
D. F.
James
, “
Analysis of the Rouse model in extensional flow. II Stresses generated in sink flow by flexible macromolecules and by finitely extended macromolecules
,”
J. Chem. Phys.
78
,
4749
4754
(
1983
).
23.
Kwan
,
T. C. B.
and
E. S. G.
Shaqfeh
, “
Brownian dynamics simulations of the stress and molecular configuration of polymers in exponential and linearly-ramped shear flow
,”
J. Non-Newtonian Fluid Mech.
82
,
139
165
(
1998
).
24.
Larson
,
R. G.
, “
The unraveling of a polymer in strong extensional flow
,”
Rheol. Acta
29
,
371
384
(
1990
).
25.
Laun
,
H. M.
and
H.
Schuch
, “
Transient elongational viscosities and drawability of polymer melts
,”
J. Rheol.
33
,
119
175
(
1989
).
26.
Lee
,
E. C.
and
S. J.
Muller
, “
Flow light scattering studies of polymer coil conformation in solutions in extensional flow
,”
Macromolecules
32
,
3295
3305
(
1999
).
27.
Li
,
L.
,
R. G.
Larson
, and
T.
Sridhar
, “
Brownian dynamics simulations of dilute polystyrene solutions
,”
J. Rheol.
44
,
291
322
(
2000
).
28.
Liu
,
T. W.
, “
Flexible polymer chain dynamics and rheological properties in steady flows
,”
J. Chem. Phys.
90
,
5826
5842
(
1989
).
29.
Lodge, A. S., Elastic Liquids (Academic, New York, 1964).
30.
Lumley
,
J. L.
, “
Drag reduction by additives
,”
Annu. Rev. Fluid Mech.
1
,
367
383
(
1969
).
31.
Meissner
,
J.
and
J.
Hostettler
, “
A new elongational rheometer for polymer melts and other highly viscoelastic liquids
,”
Rheol. Acta
33
,
1
21
(
1994
).
32.
Nguyen, T. Q. and H. H. Kausch, Eds., Flexible Polymer Chains in Elongational Flow: Theory and Experiment (Springer, New York, 1999).
33.
Orr
,
N. V.
and
T.
Sridhar
, “
Probing the dynamics of polymer solutions in extensional flow using step strain rate experiments
,”
J. Non-Newtonian Fluid Mech.
82
,
203
232
(
1999
).
34.
Petrie, C. J. S., Elongational Flows (Pitman, San Francisco, 1979).
35.
Petrie
,
C. J. S.
, “
Extensional flows of Oldroyd fluids
,”
J. Non-Newtonian Fluid Mech.
14
,
189
202
(
1990a
).
36.
Petrie
,
C. J. S.
, “
Some asymptotic results for planar extension
,”
J. Non-Newtonian Fluid Mech.
34
,
37
62
(
1990b
).
37.
Petrie
,
C. J. S.
, “
Some asymptotic results for high rates of strain
,”
J. Non-Newtonian Fluid Mech.
79
,
297
313
(
1998
).
38.
Pope
,
D. P.
and
A.
Keller
, “
A study of the chain extending effect of elongation flow in polymer solutions
,”
Colloid Polym. Sci.
256
,
751
756
(
1978
).
39.
Ryskin
,
G.
, “
Calculation of the effect of polymer additive in a converging flow
,”
J. Fluid Mech.
178
,
423
440
(
1987
).
40.
Samurkas
,
T.
,
R. G.
Larson
, and
J. M.
Dealy
, “
Strong extensional and shearing flows of a branched polyethylene
,”
J. Rheol.
33
,
559
578
(
1989
).
41.
Schieber
,
J. D.
and
J. M.
Wiest
, “
Molecular theory predictions of the exponential shear stress coefficient
,”
J. Rheol.
33
,
979
987
(
1989
).
42.
Schunk
,
P. R.
and
L. E.
Scriven
, “
Constitutive equation for modeling mixed extension and shear in polymer solution processing
,”
J. Rheol.
34
,
1085
1119
(
1990
).
43.
Solomon
,
M. J.
and
S. J.
Muller
, “
The transient extensional behavior of polystyrene-based Boger fluids of varying solvent quality and molecular-weight
,”
J. Rheol.
40
,
837
856
(
1996
).
44.
Spiegelberg
,
S. H.
and
G. H.
McKinley
, “
Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow
,”
J. Non-Newtonian Fluid Mech.
67
,
49
76
(
1996
).
45.
Sridhar
,
T.
, “
An overview of the project M1
,”
J. Non-Newtonian Fluid Mech.
35
,
85
92
(
1990
).
46.
Takserman-Krozer
,
R.
, “
Behavior of polymer solutions in the velocity field with parallel gradient. III. Molecular orientation in dilute solutions containing flexible chain macromolecules
,”
J. Polym. Sci., Part A: Gen. Pap.
1
,
2487
2494
(
1963
).
47.
Taylor
,
G. I.
, “
The formation of emulsions in definable fields of flow
,”
Proc. R. Soc. London
29
,
501
523
(
1934
).
48.
Tirtaatmadja
,
V.
and
T.
Sridhar
, “
A filament stretching device for measurement of extensional viscosity
,”
J. Rheol.
37
,
1081
1102
(
1993
).
49.
Tirtaatmadja
,
V.
and
T.
Sridhar
, “
Comparison of constitutive equations for polymer solutions in uniaxial extension
,”
J. Rheol.
39
,
1133
1160
(
1995
).
50.
van Nieuwkoop
,
J.
and
M. M. O. M.
von Czernicki
, “
Elongation and subsequent relaxation measurements on dilute polyisobutylene solutions
,”
J. Non-Newtonian Fluid Mech.
67
,
105
123
(
1996
).
51.
Venerus
,
D. C.
, “
Exponential shear flow of branched polymer melts
,”
Rheol. Acta
39
,
71
79
(
2000
).
52.
Warner
,
H. R.
, “
Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells
,”
Ind. Eng. Chem. Fundam.
11
,
379
387
(
1972
).
53.
Zülle
,
B.
,
J. J.
Linster
,
J.
Meissner
, and
H. P.
Hürlimann
, “
Deformation hardening and thinning in both elongation and shear of a low-density polyethylene melt
,”
J. Rheol.
31
,
583
598
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.