In this study we have theoretically investigated the effect of detailed fluid rheology (e.g., spectrum of relaxation times, shear thinning of first normal stresses, finite second normal stresses, and ratio of solvent to total viscosity) and energetics on the purely elastic instability of Taylor–Couette flow. The isothermal analysis showed that irrespective of the details of the fluid rheology, solvent to total viscosity ratio and gap width, the secondary flow is time-dependent and nonaxisymmetric. However, as the number of relaxation times is increased, the critical Deborah number reaches an asymptotic value which is approximately half of the critical Deborah number predicted by the single-mode constitutive equation. These results strengthen the conclusions of Al-Mubaiyedh et al. (1999) that have attributed the existence of a stationary secondary flow in the experiments of Baumert and Muller (1995, 1997) to the effect of energetics. The nonisothermal analyses predicted, for experimentally realizable values of Peclet and Brinkman numbers, the instability to be caused by stationary and axisymmetric disturbances as observed in the experiments of Baumert and Muller (1995, 1997). Moreover, it has been shown that although the details of the fluid rheology can influence the onset conditions in the nonisothermal viscoelastic Taylor–Couette flow, the mechanism of the instability as well as the structure of the bifurcated solutions are relatively insensitive to the details of the fluid rheology.

1.
Al-Mubaiyedh
,
U. A.
,
R.
Sureshkumar
, and
B.
Khomani
, “
Influence of energetics on the stability of Taylor–Couette flow
,”
Phys. Fluids
11
,
3217
3226
(
1999
).
2.
Avgousti
,
M.
and
A. N.
Beris
, “
Non-axisymmetric modes in the viscoelastic Taylor–Couette flow
,”
J. Non-Newtonian Fluid Mech.
50
,
225
251
(
1993a
).
3.
Avgousti
,
M.
and
A. N.
Beris
, “
Viscoelastic Taylor–Couette flow: Bifurcation analysis in the presence of symmetries
,”
Proc. R. Soc. London, Ser. A
443
,
17
37
(
1993b
).
4.
Baumert
,
B. M.
and
S. J.
Muller
, “
Flow regimes in model viscoelastic fluid in a circular couette system with independently rotating cylinders
,”
Phys. Fluids
9
,
566
586
(
1997
).
5.
Baumert
,
B. M.
and
S. J.
Muller
, “
Flow visualization of the elastic Taylor–Couette instability in Boger fluids
,”
Rheol. Acta
34
,
147
159
(
1995
).
6.
Beris
,
A. N.
,
M.
Avgousti
, and
A.
Souvaliotis
, “
Spectral calculations of viscoelastic flows: evolution of the Giesekus constitutive equation in model flow problems
,”
J. Non-Newtonian Fluid Mech.
44
,
197
228
(
1992
).
7.
Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics (Springer, New York, 1988), Chaps. 3 and 5.
8.
Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961).
9.
Chossat, P. and G. Iooss, The Couette–Taylor Problem (Springer, New York, 1994).
10.
Crochet
,
M. J.
and
P. M.
Naghdi
, “
A class of simple solids with fading memory
,”
Int. J. Eng. Sci.
7
,
1173
1198
(
1969
).
11.
Ganpule
,
H. K.
and
B.
Khomami
, “
An investigation of interfacial instabilities in the superposed channel flow of viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
81
,
27
69
(
1999
).
12.
Giesekus
,
H.
, “
Zur Stabilitat von Stromungen viskoelastischen Flussigkeiten
,”
Rheol. Acta
5
,
239
252
(
1966
).
13.
Golubitsky
,
M.
and
W. F.
Langford
, “
Pattern formation and bistability in flow between counterrotating cylinders
,”
Physica (Utrecht)
32
,
362
392
(
1988
).
14.
Larson
,
R. G.
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
263
(
1992
).
15.
Larson
,
R. G.
,
E. S. G.
Shaqfeh
, and
S. J.
Muller
, “
A purely elastic instability in Taylor–Couette flow
,”
J. Fluid Mech.
218
,
573
600
(
1990
).
16.
Larson
,
R. G.
,
S. J.
Muller
, and
E. S. G.
Shaqfeh
, “
The effect of fluid rheology on the elastic Taylor–Couette instability
,”
J. Non-Newtonian Fluid Mech.
51
,
195
225
(
1994
).
17.
Muller
,
S. J.
,
E. S. G.
Shaqfeh
, and
R. G.
Larson
, “
Experimental studies of the onset of oscillatory instability in viscoelastic Taylor–Couette flow
,”
J. Non-Newtonian Fluid Mech.
46
,
315
330
(
1993
).
18.
Muller
,
S. J.
,
R. G.
Larson
, and
E. S. G.
Shaqfeh
, “
A purely elastic transition in Taylor–Couette flow
,”
Rheol. Acta
28
,
499
503
(
1989
).
19.
Öztekin
,
A.
,
R. A.
Brown
, and
G. H.
McKinley
, “
Quantitative prediction of the viscoelastic instability in cone-and-plate flow of a Boger fluid using a multi-mode Giesekus model
,”
J. Non-Newtonian Fluid Mech.
54
,
351
377
(
1994
).
20.
Quinzani
,
L. M.
,
G. H.
McKinley
,
R. A.
Brown
, and
R.
Armstrong
, “
Modelling the rheology of polyisobutylene solutions
,”
J. Rheol.
34
,
705
748
(
1990
).
21.
Renardy
,
M.
,
Y.
Renardy
,
R.
Sureshkumar
, and
A. N.
Beris
, “
Hopf–Hopf and steady Hopf mode interactions in Taylor–Couette flow of an upper convected Maxwell liquid
,”
J. Non-Newtonian Fluid Mech.
63
,
1
31
(
1996
).
22.
Shaqfeh
,
E. S. G.
, “
Purely elastic instabilities in viscometric flows
,”
Annu. Rev. Fluid Mech.
28
,
129
185
(
1996
).
23.
Shaqfeh
,
E. S. G.
,
S. J.
Muller
, and
R. G.
Larson
, “
The effects of gap width and dilute solution properties in viscoelastic Taylor–Couette instability
,”
J. Fluid Mech.
235
,
285
317
(
1992
).
24.
Sureshkumar
,
R.
,
A. N.
Beris
, and
M.
Avgousti
, “
Non-axisymmetric subcritical bifurcation in viscoelastic Taylor–Couette flow
,”
Proc. R. Soc. London, Ser. A
447
,
135
153
(
1994
).
25.
Taylor
,
G. I.
, “
Stability of a viscous liquid contained between two rotating cylinders
,”
Philos. Trans. R. Soc. London, Ser. A
223
,
289
343
(
1923
).
This content is only available via PDF.
You do not currently have access to this content.