Using a nonlocal nematic potential, we generalize the Doi theory for nematic polymers to include distortional elasticity. We derive an evolution equation for the configuration tensor and a constitutive equation for a nonlocal stress tensor which is consistent with the long-range order in nematic polymers. One of the interesting effects of distortional elasticity is the appearance of a mean-field torque on the molecules as they are forced away by flow from their preferred orientation. This torque gives rise to an antisymmetric part of the stress tensor. With a few molecular parameters, the complete system of equations is capable, we believe, of describing the evolution of the texture and the dynamics of disclinations in flowing nematic polymers. Thus, for the first time, a suitable platform for exploring complex flows of nematic polymers is established. In the limit of weak flows and small distortions, the theory properly reduces to the Leslie–Ericksen theory. The Leslie viscosities are derived in terms of molecular parameters.

1.
Archer
,
L. A.
and
R. G.
Larson
, “
A molecular theory of flow alignment and tumbling in sheared nematic liquid crystals
,”
J. Chem. Phys.
103
,
3108
3111
(
1995
).
2.
Beris, A. N. and B. J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure (Oxford University Press, New York, 1994).
3.
Bird, R. B., C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2. Kinetic Theory (Wiley, New York, 1987), pp. 406–407.
4.
Brenner
,
H.
, “
Rheology of two-phase systems
,”
Annu. Rev. Fluid Mech.
2
,
137
176
(
1970
).
5.
de Gennes
,
P. G.
, “
Phenomenology of short-range-order effects in the isotropic phase of nematic materials
,”
Phys. Lett.
35A
,
454
455
(
1969
).
6.
de Gennes, P. G. and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University Press, New York, 1993).
7.
Doi
,
M.
, “
Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases
,”
J. Polym. Sci., Polym. Phys. Ed.
19
,
229
243
(
1981
).
8.
Doi, M. and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986).
9.
Edwards
,
B. J.
and
A. N.
Beris
, “
Order parameter representation of spatial inhomogeneities in polymeric liquid crystals
,”
J. Rheol.
33
,
1189
1193
(
1989
).
10.
Edwards
,
B. J.
,
A. N.
Beris
, and
M.
Grmela
, “
Generalized constitutive equation for polymeric liquid crystals. Part 1. Model formulation using the Hamiltonian (Poisson bracket) formulation
,”
J. Non-Newtonian Fluid Mech.
35
,
51
72
(
1990
).
11.
Ericksen
,
J. L.
, “
Liquid crystals with variable degree of orientation
,”
Arch. Ration. Mech. Anal.
113
,
97
120
(
1991
).
12.
Farhoudi
,
Y.
and
A. D.
Rey
, “
Shear flows of nematic polymers. I. Orienting modes, bifurcations, and steady state rheological predictions
,”
J. Rheol.
37
,
289
314
(
1993
).
13.
Feng
,
J.
C. V.
Chaubal
, and
L. G.
Leal
, “
Closure approximations for the Doi theory: which to use in simulating complex flows of liquid-crystalline polymers?
J. Rheol.
42
,
1095
1119
(
1998
).
14.
Feng
J.
, and
L. G.
Leal
, “
Simulating complex flows of liquid-crystalline polymers using the Doi theory
,”
J. Rheol.
41
,
1317
1335
(
1997
).
15.
Feng
,
J.
and
L. G.
Leal
, “
Pressure-driven channel flows of a model liquid-crystalline polymer
,”
Phys. Fluids
11
,
2821
2835
(
1999
).
16.
Greco
,
F.
, “
Field equation of nematostatics
,”
Mol. Cryst. Liq. Cryst.
290
,
139
148
(
1996
).
17.
Greco
,
F.
and
G.
Marrucci
, “
Molecular structure of the hedgehog point defect in nematics
,”
Mol. Cryst. Liq. Cryst.
210
,
129
141
(
1992
).
18.
Katriel
,
J.
,
G. F.
Kventsel
,
G. R.
Luckhurst
, and
T. J.
Sluckin
, “
Free energies in the Landau and molecular approaches
,”
Liq. Cryst.
1
,
337
355
(
1986
).
19.
Kneppe
,
H.
and
F.
Schneider
, “
Determination of the viscosity coefficients of the liquid crystal MBBA
,”
Mol. Cryst. Liq. Cryst.
65
,
23
37
(
1981
).
20.
Kupferman
,
R.
,
M. N.
Kawaguchi
, and
M. M.
Denn
, “
Emergence of structure in a model of liquid crystalline polymers with elastic coupling
,”
J. Non-Newtonian Fluid Mech.
91
,
255
271
(
2000
).
21.
Kuzuu
,
N.
and
M.
Doi
, “
Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation
,”
J. Phys. Soc. Jpn.
52
,
3486
3494
(
1983
).
22.
Kuzuu
,
N.
and
M.
Doi
, “
Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation. II. Leslie coefficients for rodlike polymers
,”
J. Phys. Soc. Jpn.
53
,
1031
1040
(
1984
).
23.
Landau, L. D. and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, New York, 1986), §1.3.
24.
Larson
,
R. G.
, “
Roll-cell instabilities in shearing flows of nematic polymers
,”
J. Rheol.
37
,
175
197
(
1993
).
25.
Larson
,
R. G.
and
D. W.
Mead
, “
The Ericksen number and Deborah number cascades in sheared polymeric nematics
,”
Liq. Cryst.
15
,
151
169
(
1993
).
26.
Leigh, D. C., Nonlinear Continuum Mechanics (McGraw-Hill, New York, 1968).
27.
Marrucci
,
G.
and
F.
Greco
, “
The elastic constants of Maier–Saupe rodlike molecule nematics
,”
Mol. Cryst. Liq. Cryst.
206
,
17
30
(
1991
).
28.
Marrucci
,
G.
and
F.
Greco
, “
A molecular approach to the polydomian structure of LCPs in weak shear flows
,”
J. Non-Newtonian Fluid Mech.
44
,
1
13
(
1992
).
29.
Marrucci
,
G.
and
F.
Greco
, “
Flow behavior of liquid crystalline polymers
,”
Adv. Chem. Phys.
86
,
331
404
(
1993
).
30.
O’Neill
,
G. J.
, “
The determination of the viscosity coefficients of nematic liquid crystals
,”
Liq. Cryst.
1
,
272
280
(
1986
).
31.
Sigillo
,
I. F.
,
F.
Greco
, and
G.
Marrucci
, “
Model of a disclination core in nematics
,”
Liq. Cryst.
24
,
419
425
(
1998
).
32.
Ternet
,
D. J.
,
R. G.
Larson
, and
L. G.
Leal
, “
Flow-aligning and tumbling in SMLC: pure components and mixtures
,”
Rheol. Acta
38
,
183
197
(
1999
).
33.
Tsuji
,
T.
and
A. D.
Rey
, “
Effect of long range order on sheared liquid crystalline materials. Part 1: compatibility between tumbling behavior and fixed anchoring
,”
J. Non-Newtonian Fluid Mech.
73
,
127
152
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.