We report a phenomenological constitutive model with no adjustable parameters appropriate for the transient behavior of droplets and blends. The time evolution of the droplet anisotropy tensor during droplet relaxation under quiescent conditions is described using a frame-invariant formulation that approximately imposes constancy of droplet volume. The Doi–Ohta theory [J. Chem. Phys. 95, 1242 (1991)] is then adapted to transient flows in which breakup and coalescence do not occur by replacing the Doi–Ohta relaxation terms with this relaxation description. Model predictions are compared to results of visualization of single droplets in step shear and startup of steady shear and to measurement of concentrated blend rheology in step shear and startup of steady shear. The model quantitatively described the relaxation after step strain of single droplets to axisymmetric and then to isotropic shapes. With the inclusion of the rational ellipsoidal closure for affine deformation [Wetzel and Tucker, Int. J. Multiphase Flow 25, 35 (1999)], single droplet response in startup of steady shear was also well predicted. For concentrated (φ=0.2) blends, good agreement between experiment and theory was obtained for step strain, while in startup of steady shear the model increasingly failed as the shear rate was increased.

1.
Barthes-Biesel
,
D.
and
A.
Acrivos
, “
Deformation and burst of a liquid droplet freely suspended in a linear shear field
,”
J. Fluid Mech.
61
,
1
21
(
1973
).
2.
Batchelor
,
G. K.
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
570
(
1970
).
3.
Bentley
,
B. J.
and
L. G.
Leal
, “
An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows
,”
J. Fluid Mech.
167
,
241
283
(
1986
).
4.
Choi
,
S. J.
and
W. R.
Schowalter
, “
Rheological properties of nondilute suspensions of deformable particles
,”
Phys. Fluids
18
,
420
427
(
1975
).
5.
Cintra
,
J. S.
and
C. L.
Tucker
, “
Orthotropic closure approximations for flow-induced fiber orientation
,”
J. Rheol.
39
,
1095
1122
(
1995
).
6.
Cox
,
R. G.
, “
The deformation of a drop in a general time-dependent fluid flow
,”
J. Fluid Mech.
37
,
601
623
(
1969
).
7.
Doi
,
M.
and
T.
Ohta
, “
Dynamics and rheology of complex interfaces. I
,”
J. Chem. Phys.
95
,
1242
1248
(
1991
).
8.
Delaby
,
I.
,
B.
Ernst
,
Y.
Germain
, and
R.
Muller
, “
Droplet deformation in polymer blends during uniaxial extensional flow: Influence of viscosity ratio for large capillary numbers
,”
J. Rheol.
38
,
1705
1720
(
1994
).
9.
Elemans, P. H. M., “Modelling of the processing of incompatible polymer blends,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1989.
10.
Elemans
,
P. H. M.
,
H. L.
Bos
,
J. M. H.
Janssen
, and
H. E. H.
Meijer
, “
Transient phenomena in dispersive mixing
,”
Chem. Eng. Sci.
48
,
267
276
(
1993
).
11.
Faisant
,
J. B.
,
A.
Ait-Kadi
,
M.
Bousmina
, and
L.
Deschenes
, “
Morphology, thermomechanical and barrier properties of polypropylene ethylene-vinyl alcohol blends
,”
Polymer
39
,
533
545
(
1998
).
12.
Favis
,
B. D.
and
J. P.
Chalifoux
, “
Effect of viscosity ratio on the morphology of polypropylene/polycarbonate blends during processing
,”
Polym. Eng. Sci.
27
,
1591
1600
(
1987
).
13.
Frankel
,
N. A.
and
A.
Acrivos
, “
Constitutive equation for a dilute emulsion
,”
J. Fluid Mech.
44
,
65
78
(
1970
).
14.
Grace
,
H. P.
, “
Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems
,”
Chem. Eng. Commun.
14
,
225
277
(
1982
).
15.
Graebling
,
D.
,
R.
Muller
, and
J. F.
Palierne
, “
Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of the data with a model of emulsions of viscoelastic liquids
,”
Macromolecules
26
,
320
329
(
1993
).
16.
Grmela
,
M.
and
A.
Ait-Kadi
, “
Comments on the Doi-Ohta theory of blends
,”
J. Non-Newtonian Fluid Mech.
55
,
191
195
(
1994
).
17.
Guido
,
S.
and
M.
Villone
, “
Three-dimensional shape of a drop under simple shear flow
,”
J. Rheol.
42
,
395
415
(
1998
).
18.
Larson, R. G., Constitutive Equations for Polymer Melts and Solutions (Butterworth, MA, 1988).
19.
Larson, R. G., The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).
20.
Lee
,
H. M.
and
O. O.
Park
, “
Rheology and dynamics of immiscible polymer bends
,”
J. Rheol.
38
,
1405
1425
(
1994
).
21.
Li
,
X.
,
R.
Charles
, and
C.
Pozrikidis
, “
Simple shear flow of suspensions of liquid drops
,”
J. Fluid Mech.
320
,
395
416
(
1996
).
22.
Maffettone
,
P. L.
and
M.
Minale
, “
Equation of change for ellipsoidal drops in viscous flow
,”
J. Non-Newtonian Fluid Mech.
78
,
227
241
(
1998
).
23.
Maffettone, P. L., S. Guido, and M. Minale, “The deformation of an ellipsoidal drop under viscous flow conditions,” Progress and Trends in Rheology V: Proceedings of the Fifth European Rheology Conference (Steinkopff, Darmstadt, 1998), pp. 84–85.
24.
Matsuzaka
,
K.
,
T.
Koga
, and
T.
Hashimoto
, “
Rheological response from phase-separated domains as studied by shear microscopy
,”
Phys. Rev. Lett.
80
,
5441
5444
(
1998
).
25.
NIH image manual, http://rsb.info.nih.gov/nih-image/manual/contents.html.
26.
Okamoto
,
K.
,
M.
Takahashi
, and
H.
Yamane
, “
Shape recovery of a dispersed droplet phase and stress relaxation after application of step shear strains in a polystyrene/polycarbonate blend melt
,”
J. Rheol.
43
,
951
965
(
1999
).
27.
Palierne
,
J. F.
, “
Linear rheology of viscoelastic emulsions with interfacial tension
,”
Rheol. Acta
29
,
204
214
(
1990
).
28.
Ramic
,
A. J.
,
S. D.
Hudson
,
A. M.
Jamieson
, and
I.
Manas-Zloczower
, “
Shear-induced coalescence in immiscible polymer blends
,”
Polymer
41
,
6263
6270
(
2000
).
29.
Sondergraad
,
K.
and
J.
Lyngaae-Jorgensen
, “
Coalescence in an interface-modified polymer blend as studied by light scattering measurements
,”
Polymer
37
,
509
517
(
1996
).
30.
Stone
,
H. A.
,
B. J.
Bentley
, and
L. G.
Leal
, “
An experimental study of transient effects in the breakup of viscous drops
,”
J. Fluid Mech.
173
,
131
158
(
1986
).
31.
Subramanian, P. M., “Process for making laminar articles of polyolefin and a condensation polymer,” U.S. Patent No. 4,410,482 (1983).
32.
Takahashi
,
Y.
,
N.
Kurashima
,
I.
Noda
, and
M.
Doi
, “
Experimental tests of the scaling relation for textured materials in mixtures of two immiscible fluids
,”
J. Rheol.
38
,
699
712
(
1994
).
33.
Taylor
,
G. I.
, “
The viscosity of a fluid containing small drops of another fluid
,”
Proc. R. Soc. London, Ser. A
138
,
41
48
(
1932
).
34.
Taylor
,
G. I.
, “
The formation of emulsion in definable field of flow
,”
Proc. R. Soc. London, Ser. A
146
,
501
523
(
1934
).
35.
Vermant
,
J.
,
P.
Van Puyvelde
,
P.
Moldenaers
,
J.
Mewis
, and
G. G.
Fuller
, “
Anisotropy and orientation of the microstructure in viscous emulsions during shear flow
,”
Langmuir
14
,
1612
1617
(
1998
).
36.
Vinckier, I., “Microstructural analysis and rheology of immiscible polymer blends,” Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, 1998.
37.
Vinckier
,
I.
,
P.
Moldenaers
, and
J.
Mewis
, “
Transient rheological response and morphology evolution of immiscible polymer blends
,”
J. Rheol.
41
,
705
718
(
1997
).
38.
Vinckier
,
I. P.
,
P.
Moldenaers
,
A. M.
Terraciano
, and
N.
Grizzuti
, “
Droplet size evolution during coalescence in semi-concentrated model blends
,”
AIChE J.
44
,
951
958
(
1998
).
39.
Wagner
,
N. J.
,
H. C.
Öttinger
, and
B. J.
Edwards
, “
Generalized Doi-Ohta model for multiphase flow developed via generic
,”
AIChE J.
45
,
1169
1181
(
1999
).
40.
Wetzel
,
E. D.
and
C. L.
Tucker
, III
, “
Area tensors for modeling microstructure during laminar liquid-liquid mixing
,”
Int. J. Multiphase Flow
25
,
35
61
(
1999
).
41.
Wu
,
S.
, “
Formation of dispersed phase in incompatible polymer blends-interfacial and rheological effects
,”
Polym. Eng. Sci.
27
,
335
343
(
1987
).
42.
Yamane
,
H.
,
M.
Takahashi
,
R.
Hayashi
, and
K.
Okamoto
, “
Observation of deformation and recovery of poly(isobutylene) droplet in a poly(isobutylene)/poly(dimethyl siloxane) blend after application of step shear strain
,”
J. Rheol.
42
,
567
580
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.