Maier et al. [Maier, D., et al., J. Rheol. 42, 1153–1173 (1998)] examined the reconstruction of binary molecular weight distributions from rheological data for a series of polystyrene mixtures using a generalized mixing rule recently introduced [Anderssen, R. S. and D. W. Mead, J. Non-Newtonian Fluid Mech. 76, 299–306 (1998)]. They found an unexpected high value for β(β=3.84±0.1), the mixing parameter, which is 1 for the reptation and 2 for the double reptation or entanglement models. This result can be understood when the relaxation time spectrum is decomposed into a Rouse and an entanglement part and only the latter is used for determination of the molecular weight distribution. Applying a procedure which separates the Rouse processes from the spectrum determined from measured dynamic shear moduli, β values are found which are in accordance with the double reptation theory and which give very good agreement between molecular weight distributions determined by size-exclusion chromatography and by rheological data evaluation.

1.
Anderssen
,
R. S.
and
D. W.
Mead
, “
Theoretical deviation of molecular weight scaling for rheological parameters
,”
J. Non-Newtonian Fluid Mech.
76
,
299
306
(
1998
).
2.
Baumgaertel
,
M.
,
A.
Schausberger
, and
H. H.
Winter
, “
Relaxation of polymers with linear flexible chains of uniform length
,”
Rheol. Acta
28
,
400
408
(
1990
).
3.
De Gennes, P.-G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).
4.
Des Cloizeaux
,
J.
, “
Double reptation vs simple reptation in polymer melts
,”
Europhys. Lett.
5
,
437
442
(
1988
);
Des Cloizeaux
,
J.
,
Europhys. Lett.
6
,
475
(
1988
).
5.
Des Cloizeaux
,
J.
, “
Relaxation and viscosity anomaly of melts made of long entangled polymers. Time dependent reptation
,”
Macromolecules
23
,
4678
4687
(
1990
).
6.
Doi, M. and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).
7.
Fuchs
,
K.
,
C.
Friedrich
, and
J.
Weese
, “
Viscoelastic properties of narrow-distribution poly(methyl methacrylates)
,”
Macromolecules
29
,
5893
5901
(
1996
).
8.
Honerkamp
,
J.
and
J.
Weese
, “
A nonlinear regularization method for the calculation of relaxation spectra
,”
Rheol. Acta
32
,
65
73
(
1993
).
9.
Maier
,
D.
,
A.
Eckstein
,
C.
Friedrich
, and
J.
Honerkamp
, “
Evaluation of models combining rheological data with the molecular weight distribution
,”
J. Rheol.
42
,
1153
1173
(
1998
).
10.
Rouse
,
P. E.
, “
A theory of the linear viscoelastic properties of dilute solutions of coiling polymers
,”
J. Chem. Phys.
21
,
1272
1280
(
1953
).
11.
Thimm
,
W.
,
C.
Friedrich
,
M.
Marth
, and
J.
Honerkamp
, “
An analytical relation between relaxation time spectrum and molecular weight distribution
,”
J. Rheol.
43
,
1663
1672
(
1999a
).
12.
Thimm
,
W.
,
C.
Friedrich
,
D.
Maier
,
M.
Marth
, and
J.
Honerkamp
, “
Determination of molecular weight distributions from rheological data—An application to polystyrene, polymethylmethacrylate and isotactic polypropylene
,”
Appl. Rheology
9
,
150
157
(
1999b
).
13.
Tsenoglou
,
C.
, “
Viscoelasticity of binary homopolymer blends
,”
ACS Polym. Prepr.
28
,
185
186
(
1987
).
14.
Tsenoglou
,
C.
, “
Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers
,”
Macromolecules
24
,
1762
1767
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.