State transitions of 7S and 11S soy globulins were studied as a function of moisture by monitoring their rheological and calorimetric properties. Small-amplitude oscillatory rheometry and differential scanning calorimetry (DSC) were used to characterize their denaturation and complexing reactions within a temperature range of 40–200 °C and moisture contents of approximately 20%, 30%, and 40%. Major increases in rheological properties showed that the 7S and 11S fractions with 40% moisture underwent structure forming reactions above 70 and 100 °C, respectively, while they reacted at higher temperatures for lower moisture. DSC helped to identify the individual complexing behavior of each fraction. The above, along with the information from their glass transition, previously reported, allowed us to develop state diagrams for each protein, where glassy, rubbery, entangled polymer, reaction, and free-flow states were identified.

1.
AACC (1984), Moisture-Air Oven Method, Drying at 135°C, Method 44-19, AACC Approved Methods.
2.
Aklonis, J. J. and W. J. MacKnight, Introduction to Polymer Viscoelasticity, 2nd ed. (Wiley, New York, 1983).
3.
Badley
,
R. A.
,
D.
Atkinson
,
H.
Hauser
,
D.
Oldani
,
J. P.
Green
, and
J. M.
Stubbs
, “
The structure, physical and chemical properties of the soybean protein glycinin
,”
Biochim. Biophys. Acta
412
,
214
228
(
1975
).
4.
Baltzer
,
H.
and
U. T.
Kreibich
, “
Influence of water on thermal transitions in natural polymers and synthetic polyamides
,”
Polym. Bull. (Berlin)
5
,
585
(
1981
).
5.
Chronakis
,
I. S.
,
S.
Kasapis
, and
R.
Richardson
, “
Characterisation of a commercial soy isolate by physical techniques
,”
J. Texture Stud.
26
,
371
389
(
1995
).
6.
Circle
,
S. J.
,
E. W.
Meyer
, and
R. W.
Whitney
, “
Rheology of soy protein dispersions, effect of heat and other factors on gelatin
,”
Cereal Chem.
41
,
157
172
(
1964
).
7.
de Graaf
,
E. M.
,
H.
Madeka
, and
J. L.
Kokini
, “
Determination of the effect of moisture on gliadin glass transition using mechanical spectrometry and differential scanning calorimetry
,”
Biotechnol. Prog.
9
,
210
213
(
1993
).
8.
Ferry, J. D., Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
9.
Fukushima
,
D.
, “
Structures of plant storage proteins and their functions
,”
Food Rev. Int.
7
,
351
381
(
1991
a).
10.
Fukushima
,
D.
, “
Recent progress of soybean protein foods: Chemistry, technology, and nutrition
,”
Food Rev. Int.
7
,
323
351
(
1991
b).
11.
Gordon
,
M.
and
J. S.
Taylor
, “
Ideal copolymers and second-order transitions in synthetic rubbers. I. Non-crystalline polymers
,”
J. Appl. Chem.
2
,
493
500
(
1952
).
12.
Hermansson
,
A. M.
, “
Functional properties of proteins for foods—Flow properties
,”
J. Texture Stud.
5
,
425
439
(
1975
).
13.
Hermansson, A. M., “Aspects of protein structure rheology and texturization,” in Food Texture and Rheology, edited by P. Sherman (Academic, New York, 1979), pp. 265–282.
14.
Hermansson
,
A. M.
, “
Soy protein gelation
,”
J. Am. Oil Chem. Soc.
63
,
658
666
(
1986
).
15.
Howard, P. A., W. F. Lehnhardt, and F. T. Orthoefer, “7S and 11S vegetable protein fractionation and isolation,” U.S. Patent No. 4, 368, 151 (1983).
16.
Johari
,
G. P.
,
A.
Hallbrucker
, and
E.
Mayer
, “
The glass–liquid transition of hyperquenched water
,”
Nature (London)
330
,
552
553
(
1987
).
17.
Kinsella
,
J. E.
, “
Functional properties of soy proteins
,”
J. Am. Oil Chem. Soc.
56
,
242
258
(
1979
).
18.
Kitabatake
,
N.
,
M.
Tahara
, and
E.
Doi
, “
Thermal denaturation of soybean protein at low water contents
,”
Agric. Biol. Chem.
54
,
2205
2212
(
1990
).
19.
Kitabatake, N. and E. Doi, “Denaturation and texturization of food protein by extrusion cooking,” in Food Extrusion Science and Technology, edited by J. L. Kokini, C. T. Ho, and M. Karwe (Marcel Dekker, New York, 1991), pp. 361–371.
20.
Kokini
,
J. L.
,
A. M.
Cocero
,
H.
Madeka
, and
E. M.
De Graaf
, “
The development of state diagrams for cereal proteins
,”
Trends Food Sci. Technol.
5
,
281
288
(
1994
).
21.
Madeka
,
H.
and
J. L.
Kokini
, “
Changes in rheological properties of gliadin as a function of temperature and moisture: Development of a state diagram
,”
J. Food. Eng.
22
,
241
252
(
1994
).
22.
Madeka, H., “Characterizing phase changes in gliadin and zein as a function of moisture and temperature using rheology and DSC,” Ph.D. Dissertation, Rutgers University, New Brunswick, NJ (1996).
23.
Miles
,
M. J.
,
V. J.
Morris
,
V.
Carrol
,
D. J.
Wright
, and
J. R.
Bacon
, “
Synchrotron radiation SAXS of 11S soya globulin
,”
Int. J. Biol. Macromol.
6
,
291
292
(
1984
).
24.
Mitchell, J. R. and J. A. G. Areas, “Structural changes in biopolymers during extrusion,” in Food Extrusion Science and Technology, edited by J. L. Kokini, C. T. Ho, and M. Karwe (Marcel Dekker, New York, 1991), pp. 345–360.
25.
Morales, A., “The rheology and phase transitions of soy globulins,” Ph.D. Dissertation, Rutgers University, New Brunswick, NJ (1997).
26.
Morales
,
A.
and
J. L.
Kokini
, “
Glass transition of soy globulins using differential scanning calorimetry and mechanical spectrometry
,”
Biotechnol. Prog.
13
,
624
629
(
1997
).
27.
Mori
,
T.
,
T.
Nakamura
, and
S.
Utsumi
, “
Gelation mechanism of soybean 11S globulin: Formation of soluble aggregates as transient intermediates
,”
J. Food. Sci.
47
,
26
30
(
1981
).
28.
Nagano
,
T.
,
T.
Akasaka
, and
K.
Nishinari
, “
Dynamic viscoelastic properties of glycinin and β-conglycinin gels from soybeans
,”
Biopolymers
34
,
1303
1309
(
1994
a).
29.
Nagano
,
T.
,
H.
Mori
, and
K.
Nishinari
, “
Effect of heating and cooling on the gelation kinetics of 7S globulin from soybeans
,”
J. Agric. Food Chem.
42
,
1415
1419
(
1994
b).
30.
Nagano
,
T.
,
H.
Mori
, and
K.
Nishinari
, “
Rheological properties and conformational states of β-conglycinin gels at acidic pH,
Biopolymers
34
,
293
298
(
1994
c).
31.
Prudencio-Ferreira
,
S. H.
and
J. A. G.
Areas
, “
Protein–protein interactions in the extrusion of soya at various temperatures and moisture contents
,”
J. Food. Sci.
58
,
378
381
and 384 (
1993
).
32.
Sperling, L. H., Introduction to Physical Polymer Science (Wiley, New York, 1986).
33.
Thanh
,
V.
and
K.
Shibasaki
, “
Major proteins of soybean seeds. A straightforward fractionation and their characterization
,”
J. Agric. Food Chem.
26
,
692
696
(
1976
).
34.
Utsumi
,
S.
and
J. E.
Kinsella
, “
Forces involved in soy protein gelation: Effect of various reagents on the formation, hardness and solubility of heat-induced gels made from 7S, 11S and soy isolate
,”
J. Food. Sci.
50
,
1278
1282
(
1985
).
35.
Yamauchi
,
F.
,
T.
Yamagishi
, and
S.
Wabuchi
, “
Molecular understanding of heat-induced phenomena of soybean protein
,”
Food Rev. Int.
7
,
283
322
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.