The shear rate γ̇min at the relative minimum in the N1 flow curve is studied as a function of temperature and concentration for liquid crystalline (hydroxypropyl)cellulose (HPC). For lyotropes, at least, γ̇min is the shear rate necessary to halt director “tumbling” and align the molecules. HPC is a convenient polymer for studying the relationship between lyotropic and thermotropic liquid crystalline polymers because it exhibits a pure thermotropic phase at elevated temperatures, and room temperature lyotropic phases at moderate concentrations in m-cresol. At the highest possible polymer concentration at which reliable rheology data can be obtained (around 70 wt % polymer), indirect evidence for director tumbling is observed, in that N1 retains a local minimum versus shear rate. For the highest concentrations this minimum N1 value is positive, rather than negative, as is the case at lower concentrations and as is predicted by the Doi theory. Empirical time–temperature and time–concentration shifting can be used to estimate γ̇min from measured values of the shear viscosity.

1.
Aden
,
M. A.
,
E.
Bianchi
,
A.
Ciferri
,
G.
Conio
, and
A.
Tealdi
, “
Mesophase formation and chain rigidity in cellulose and derivatives. 2. (Hydroxypropyl)cellulose in dichloroacetic acid
,”
Macromolecules
17
,
2010
2015
(
1984
).
2.
Baek
,
S. G.
,
J. J.
Magda
, and
R. G.
Larson
, “
Rheological differences among liquid-crystalline polymers. I. The first and second normal stress differences of PBG solutions
,”
J. Rheol.
37
,
1201
1224
(
1993a
).
3.
Baek
,
S. G.
,
J. J.
Magda
, and
S.
Cementwala
, “
Normal stress differences in liquid crystalline hydroxypropylcellulose solutions
,”
J. Rheol.
37
,
935
945
(
1993b
).
4.
Baek
,
S. G.
,
J. J.
Magda
,
R. G.
Larson
, and
S. D.
Hudson
, “
Rheological differences among liquid-crystalline polymers. II. Disappearance of negative N1 in densely packed lyotropes and thermotropes
,”
J. Rheol.
38
,
1473
1503
(
1994
).
5.
Beekmans
,
F.
,
A. D.
Gotsis
, and
B.
Norder
, “
Transient and steady-state rheological behavior of the thermotropic liquid crystalline polymer Vectra B950
,”
J. Rheol.
40
,
947
966
(
1996
).
6.
Berry
,
G. C.
, “
Bingham award lecture-1990. Rheological and rheo-optical studies on nematic solutions of a rodlike polymer
,”
J. Rheol.
35
,
943
983
(
1991
).
7.
Burghardt
,
W. R.
and
G. G.
Fuller
, “
Role of director tumbling in the rheology of polymer liquid crystal solutions
,”
Macromolecules
24
,
2546
2555
(
1991
).
8.
Burghardt
,
W. R.
,
B.
Bedford
,
K.
Hongladarom
, and
M.
Mahoney
, “
Comparison of molecular orientation and rheology in model lyotropic liquid-crystalline polymers
,”
ACS Symp. Ser.
597
,
308
319
(
1995
).
9.
Chang
,
S.
and
C. D.
Han
, “
A thermotropic main-chain random copolyester containing flexible spacers of different lengths. 2. Rheological behavior
,”
Macromolecules
30
,
1656
1669
(
1997
).
10.
Cidade
,
M. T.
,
C. R.
Leal
,
M. H.
Godinho
,
A. F.
Martins
, and
P.
Navard
, “
Rheological properties of acetoxypropylcellulose in the thermotropic chiral nematic phase
,”
Mol. Cryst. Liq. Cryst.
261
,
617
625
(
1995
).
11.
Cocchini
,
F.
,
M. R.
Nobile
, and
D.
Acierno
, “
Transient and steady rheological behavior of the thermotropic liquid crystal copolymer 73/27 HBA/HNA
,”
J. Rheol.
35
,
1171
1189
(
1991
).
12.
Cocchini
,
F.
,
M. R.
Nobile
, and
D.
Acierno
, “
Letter: About negative first normal stress differences in a thermotropic liquid crystal polymer
,”
J. Rheol.
36
,
1307
1311
(
1992
).
13.
Conio
,
G.
,
E.
Bianchi
,
A.
Ciferri
,
A.
Tealdi
, and
M. A.
Aden
, “
Mesophase formation and chain rigidity in cellulose and derivatives. 1. (Hydroxypropyl)cellulose in dimethylacetamide
,”
Macromolecules
16
,
1264
1270
(
1983
).
14.
Dadmun
,
M. D.
and
C. C.
Han
, “
A neutron scattering study of the orientation of a liquid crystalline polymer by shear flow
,”
Macromolecules
27
,
7522
7532
(
1994
).
15.
Doi
,
M.
, “
Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases
,”
J. Polym. Sci., Polym. Phys. Ed.
19
,
229
243
(
1981
).
16.
Einaga
,
Y.
,
G. C.
Berry
, and
S. G.
Chu
, “
Rheological properties of rodlike polymers in solution. III. Transient and steady-state studies on nematic solutions
,”
Polym. J. (Tokyo)
17
,
239
251
(
1985
).
17.
Ferry, J. D., Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
18.
Flory
,
P. J.
, “
Statistical thermodynamics of mixtures of rod-like particles. 6. Rods connected by flexible joints
,”
Macromolecules
11
,
1141
(
1978
).
19.
Fried
,
F.
,
C. R.
Leal
,
M. H.
Godinho
, and
A. F.
Martins
, “
The first normal stress difference and viscosity in shear of liquid crystalline solutions of hydroxypropylcellulose: New experimental data and theory
,”
Polym. Adv. Technol.
5
,
596
599
(
1994
).
20.
Gonzalez
,
J. M.
,
M.-E.
Munoz
,
M.
Cortazar
,
A.
Santamaria
, and
J. J.
Pena
, “
Rheological and thermal properties of a commercial liquid-crystalline polyesteramide
,”
J. Polym. Sci., Part B: Polym. Phys.
28
,
1533
1550
(
1990
).
21.
Grizzuti
,
N.
,
S.
Cavella
, and
P.
Cicarelli
, “
Transient and steady-state rheology of a liquid crystalline hydroxypropylcellulose solutions
,”
J. Rheol.
34
,
1293
1310
(
1990
).
22.
Guskey
,
S. M.
and
H. H.
Winter
, “
Transient shear behavior of a thermotropic liquid crystal polymer in the nematic state
,”
J. Rheol.
35
,
1191
1207
(
1991
).
23.
Han
,
C. D.
and
S.
Chang
, “
Note: On the first normal stress difference of the thermotropic copolyester 73/27 HBA/HNA
,”
J. Rheol.
38
,
241
244
(
1994
).
24.
Han, W. H. and G. B. McKenna, “Plasticization effects in polymer glasses: Concentration jump experiments,” talk RS10, 68th Annual Meeting of the Society of Rheology, Galveston, Texas, February 17, 1997.
25.
Huang, C.-M., Ph.D. dissertation, University of Utah, 1998.
26.
Kiss
,
G.
and
R. S.
Porter
, “
Rheology of concentrated solutions of poly(γ-benzyl-glutamate)
,”
J. Polym. Sci., Polym. Symp.
65
,
193
211
(
1978
).
27.
Langelaan
,
H. C.
and
A. D.
Gotsis
, “
The relaxation of shear and normal stresses of nematic liquid crystalline polymers in squeezing and shear flows
,”
J. Rheol.
40
,
107
129
(
1996
).
28.
Larson, R. G., Constitutive Equations for Polymer Melts and Solutions (Butterworths, Boston, 1988), Ch. 10.
29.
Larson
,
R. G.
, “
Arrested tumbling in shearing flows of liquid crystal polymers
,”
Macromolecules
23
,
3983
3992
(
1990
).
30.
Larson
,
R. G.
and
D. W.
Mead
, “
The Erickson number and Deborah number cascades in sheared polymeric nematics
,”
Liq. Cryst.
15
,
151
169
(
1993
).
31.
Lautenschlager
,
P.
,
J.
Brickmann
,
J.
van Ruiten
, and
R. J.
Meier
, “
Conformations and rotational barriers of aromatic polyesters
,”
Macromolecules
24
,
1284
1292
(
1991
).
32.
Leal
,
C. R.
,
M. H.
Godinho
,
A. F.
Martins
, and
F.
Fried
, “
Aging effects on the rheology of LC solutions of hydroxypropylcellulose
,”
Mol. Cryst. Liq. Cryst.
261
,
87
93
(
1995
).
33.
Macosko, C. W., Rheology: Principles, Measurements, and Applications (VCH, New York, 1994).
34.
Magda
,
J. J.
,
S.-G.
Baek
,
K. L.
DeVries
, and
R. G.
Larson
, “
Shear flows of liquid crystal polymers: Measurements of the second normal stress difference and the Doi molecular theory
,”
Macromolecules
24
,
4460
4468
(
1991
).
35.
Marrucci
,
G.
and
P. L.
Maffettone
, “
Description of the liquid-crystalline phase of rodlike polymers at high shear rates
,”
Macromolecules
22
,
4076
4082
(
1989
).
36.
Marrucci
,
G.
and
P. L.
Maffettone
, “
Nematic phase of rodlike polymers. II. Polydomain predictions in the tumbling regime
,”
J. Rheol.
34
,
1231
1244
(
1990
).
37.
Mewis
,
J.
and
P.
Moldenaers
, “
Effect of temperature on the rheology of polymeric liquid crystals
,”
Chem. Eng. Commun.
53
,
33
47
(
1987
).
38.
Onogi, S. and T. Asada, “Rheology and rhe-optics of polymer liquid crystals,” in Rheology, edited by G. Astarita, G. Marrucci, and L. Nicolais (Plenum, New York, 1980), pp. 127–147.
39.
Osswald, T. A. and G. Menges, Materials Science of Polymers for Engineers (Hanser/Gardner, Cincinnati, OH, 1996), p. 163.
40.
Shtennikova
,
I. N.
,
G. F.
Kolbina
,
V. P.
Shibaev
, and
I. V.
Ekaeva
, “
Conformational properties of hydroxypropylcellulose-II. Flow birefringence and optical anisotropy of hydroxypropylcellulose macromolecules
,”
Eur. Polym. J.
26
,
787
790
(
1990
).
41.
Srinivasarao
,
M.
and
G. C.
Berry
, “
Rheo-optical studies on aligned nematic solutions of a rodlike polymer
,”
J. Rheol.
35
,
379
397
(
1991
).
42.
Suto
,
S.
,
H.
Gotoh
,
W.
Nishibori
, and
M.
Karasawa
, “
Rheology of liquid crystalline solutions of hydroxypropyl cellulose in m-cresol
,”
J. Appl. Polym. Sci.
37
,
1147
1151
(
1989
).
43.
Suto
,
S.
,
K.
Obara
,
S.
Nishitani
, and
M.
Karasawa
, “
Viscometric behavior of liquid-crystalline solutions of hydroxypropyl cellulose in N,N-dimethylacetamide and in dimethylsulfoxide: Effects of temperature and concentration
,”
J. Polym. Sci., Polym. Phys. Ed.
24
,
1849
1857
(
1986
).
44.
Suto
,
S.
,
J. L.
White
, and
J. F.
Fellers
, “
A comparative study of the thermotropic mesomorphic tendencies and rheological characteristics of three cellulose derivatives: Ethylene and propylene oxide ethers and an acetate butyrate ester
,”
Rheol. Acta
21
,
62
71
(
1982
).
45.
Tkachenko
,
A.
and
Y.
Rabin
, “
Coupling between thermodynamics and conformations in wormlike polymer nematics
,”
Macromolecules
28
,
8646
8656
(
1995
).
46.
Ugaz
,
V. M.
,
D. K.
Cinader
, Jr.
, and
W. R.
Burghardt
, “
Origins of region I shear thinning in model lyotropic liquid crystalline polymers
,”
Macromolecules
30
,
1527
1530
(
1997
).
47.
Walker
,
L.
and
N.
Wagner
, “
Rheology of region I flow in a lyotropic liquid-crystal polymer: The effects of defect texture
,”
J. Rheol.
38
,
1525
1547
(
1994
).
48.
Walker
,
L. M.
,
N. J.
Wagner
,
R. G.
Larson
,
P. A.
Mirau
, and
P.
Moldenaers
, “
The rheology of highly concentrated PBLG solutions
,”
J. Rheol.
39
,
925
952
(
1995
).
49.
Werbowyj
,
R. S.
and
D. G.
Gray
, “
Ordered phase formation in concentrated hydroxypropylcellulose solutions
,”
Macromolecules
13
,
69
73
(
1980
).
50.
Wilson, T. S., Ph.D. dissertation, Virginia Polytechnic Institute and State University, 1991.
51.
Winter
,
H. H.
and
W.
Wedler
, “
Note: About measuring the first normal stress difference in shear flow of a thermotropic copolyester
,”
J. Rheol.
37
,
409
412
(
1993
).
52.
Wirick
,
M. G.
and
M. H.
Waldman
, “
Some solution properties of fractionated water-soluble hydroxypropylcellulose
,”
J. Appl. Polym. Sci.
14
,
579
597
(
1970
).
This content is only available via PDF.
You do not currently have access to this content.