A vane rheometer was used to measure the modulus of foam systems. Modulus development in a reactive polyurethane foam system was captured using a commercial stress-controlled rheometer with a four-blade vane geometry test fixture. The results were compared to those from a temperature programmed flooded parallel plate method. The vane geometry method was shown to be a convenient and accurate way to measure the physical gelation time of the reactive foaming system, without the complexity of the temperature-program method. Shaving cream was used as a calibration material to show the validity of the vane method for foam modulus measurements. For open cell foams, the error in the vane method increases due to the additional compressibility of the foam. The nature and magnitude of this error was analyzed via numerical simulation.

1.
Artavia, L. D.and C. W. Macosko, in Low Density Cellular Plastics, edited by N. C. Hilyard and A. Cunningham (Chapman & Hall, London, 1994), Ch. 2.
2.
Barnes
,
H. A.
and
J. O.
Carnali
, “
The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials
,”
J. Rheol.
34
,
841
866
(
1990
).
3.
Barocas
,
V. H.
and
R. T.
Tranquillo
, “
Anisotropic biphasic theory of tissure-equivalent mechanics: The interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance
,”
J. Biomech. Eng.
119
,
261
269
(
1997
).
4.
Cadling, L. and S. Odenstad, “The vane borer,” Proceedings of the Racial Swedish Geotechnical Institute (1950), No. 2.
5.
Drew
,
D. A.
and
L. A.
Segel
, “
Analysis of fluidized beds and foams using averaged equations
,”
Stud. Appl. Math.
50
,
233
257
(
1971a
).
6.
Drew
,
D. A.
and
L. A.
Segel
, “
Averaged equations for two-phase flows
,”
Stud. Appl. Math.
50
,
205
231
(
1971b
).
7.
Herrington, R. and K. Hock, eds., Flexible Polyurethane Foams (Dow Chemical Co., Midland, MI, 1991).
8.
Keentok
,
M.
, “
The measurement of the yield stress of liquids
,”
Rheol. Acta
21
,
325
332
(
1982
).
9.
Khan
,
S. A.
and
R. C.
Armstrong
, “
Rheology of foams IV: Effect of gas volume fraction
,”
J. Rheol.
33
,
881
911
(
1989
).
10.
Koztrzewski
,
W.
and
J. T.
Lindt
, “
Foam rheometer: Its principle and applications
,”
J. Cell. Plast.
21
,
424
429
(
1985
).
11.
Koztrzewski
,
W.
and
J. T.
Lindt
, “
Flow characterization of a chemically blown polymeric foam,”
J. Polym. Eng.
6
,
187
199
(
1986
).
12.
Kraynik
,
A. M.
and
M. G.
Hansen
, “
Foam rheology: A model of viscous phenomena
,”
J. Rheol.
31
,
175
205
(
1988
).
13.
Liddell
,
P. V.
and
D. V.
Boger
, “
Yield stress measurements with the vane
,”
J. Non-Newtonian Fluid Mech.
63
,
235
261
(
1996
).
14.
Macosko, C. W., Rheology: Principles, Measurements, And Applications (VCH, New York, 1994).
15.
McClusky
,
J. V.
,
J. R. D.
Priester
,
R. E.
O’Neill
,
W. R.
Willkomm
,
M. D.
Heaney
, and
M. A.
Capel
, “
Use of FTIR and dynamic SAXS to provide an improved understanding of the matrix formation and viscosity build of flexible polyurethane foam
,”
J. Cell. Plast.
30
,
360
388
(
1994
).
16.
Mora
,
E.
,
L. D.
Artavia
, and
C. W.
Macosko
, “
Modulus development during reactive urethane foaming
,”
J. Rheol.
35
,
921
940
(
1991
).
17.
Neff, R. A., Ph.D. thesis, “Reactive processing of flexible polyurethane foam,” University of Minnesota, 1995.
18.
Neff
,
R. A.
and
C. W.
Macosko
, “
Simultaneous measurement of viscoelastic changes and cell opening during processing of flexible polyurethane foam
,”
Rheol. Acta
35
,
656
666
(
1996
).
19.
Nguyen
,
Q. D.
and
D. V.
Boger
, “
Yield stress measurement for concentrated suspensions
,”
J. Rheol.
27
,
321
349
(
1983
).
20.
Nguyen
,
Q. D.
and
D. V.
Boger
, “
Direct yield stress measurement with the vane method
,”
J. Rheol.
29
,
335
347
(
1985
).
21.
Princen
,
H. M.
, “
Rheology of foams and highly concentrated emulsions. II. Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions
,”
J. Colloid Interface Sci.
105
,
149
171
(
1985
).
22.
Princen
,
H. M.
and
A. D.
Kiss
, “
Rheology of foams and highly concentrated emulsions. III. Static shear modulus
,”
J. Colloid Interface Sci.
112
,
427
437
(
1986
).
23.
Saunders, J. H. and K. C. Frisch, Polyurethanes Chemistry and Technology, Part I, Chemistry (Interscience, New York, 1962).
24.
Sherwood
,
J. D.
and
G. H.
Meeten
, “The use of vane to measure the shear modulus of linear elastic solids,”
J. Non-Newtonian Fluid Mech.
41
,
101
118
(
1991
).
25.
Webb, D. D., “Urethane systems reactivity measurements,” Proceedings of the SPI 28th Annual Technical/Marketing Conference, San Antonio, TX, 1984, pp. 2–11.
26.
Yan
,
J.
and
A. K.
James
, “
The yield surface of viscoelastic and plastic fluids in a vane viscometer
,”
J. Non-Newtonian Fluid Mech.
70
,
237
253
(
1997
).
27.
Yasunaga
,
K.
,
R. A.
Neff
, and
X. D.
Zhang
, “
Study of cell opening in flexible polyurethane foam
,”
J. Cell. Plast.
32
,
427
448
(
1996
).
28.
Yoshimura
,
A. S.
,
R. K.
Prud’homme
,
H. M.
Princen
, and
A. D.
Kiss
, “
A comparison of techniques for measuring yield stress
,”
J. Rheol.
31
,
699
710
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.