The article about Aharonov-Bohm effects is interesting and comprehensive. The primary and best-known effect shows that the vector potential A of the electromagnetic field is a physical reality rather than a mathematical artifice. That reality was implicit in the Schrödinger equation, as the Hamiltonian H depends on A instead of the electric field E and magnetic field B = ∇ × A. But the same statement also refers to the Hamilton-Jacobi equation in classical mechanics, so one may expect that a similar effect exists in classical physics as well.

Indeed, classical mechanics is governed by the fundamental Hamilton-Jacobi equation for the action S: δSt + H = 0, which naturally follows from William Hamilton’s principle of least action. Both H and S depend on A (even with E = B = 0). Thus it is quite possible that the vector potential is also a physical reality in classical physics. Erwin Schrödinger arrived at his famous equation in 1926 by using a mechanics-optics analogy, the so-called eikonal equation. Hamilton in 1834 proved that eikonal and Hamilton-Jacobi equations are equivalent, so that the Schrödinger equation actually follows from Hamilton-Jacobi.

Had Hamilton known that classical mechanics does not always hold, quantum mechanics might have appeared a century earlier. 1 The analogy between the equations of classical and quantum mechanics provides a reason to search for experiments that might prove whether a classical analogue of the Aharonov-Bohm effect exists.

1.
H.
Goldstein
,
C.
Poole
,
J.
Safko
,
Classical Mechanics
, 2nd ed.,
Addison-Wesley
,
Reading, MA
(
1980
), p.484 .