Over the past ten years, laser intensities have increased by more than four orders of magnitude to reach enormous intensities of The field strength at these intensities is on the order of a teravolt per centimeter, or a hundred times the Coulombic field binding the ground state electron in the hydrogen atom. The electrons driven by such a field are relativistic, with an oscillatory energy of 10 MeV. At these intensities, the light pressure, is extreme, on the order of giga‐ to terabars. The laser interacting with matter—solid, gas, plasma—generates high‐order harmonics of the incident beam up to the 3 nm wavelength range, energetic ions or electrons with mega‐electron‐volt energies (figure 1), gigagauss magnetic fields and violent accelerations of g (g is Earth's gravity). Finally, the interaction of an ultraintense beam with superrelativistic particles can produce fields approaching the critical field in which an electron gains in one Compton wavelength an energy equal to twice its rest mass. Under these conditions, one observes nonlinear quantum electrody‐namical effects. In many ways, this physical environment of extreme electric fields, magnetic fields, pressure, temperature and acceleration can be found only in stellar interiors or close to the horizon of a black hole. It is fascinating to think that an astrophysical environment governed by hydrodynamics, radiation transport and gravitational interaction can be re‐created in university laboratories for extremely short times, switching the role of the scientist from voyeur to actor.
Skip Nav Destination
Article navigation
January 01 1998
Ultrahigh‐Intensity Lasers: Physics of the Extreme on a Tabletop
By stretching, amplifying and then compressing laser pulses, one can reach petawatt powers, gigagauss magnetic fields, terabar light pressures and 1022 m/s2 electron accelerations.
Gérard A. Mourou;
Gérard A. Mourou
University of Michigan, Ann Arbor
Search for other works by this author on:
Christopher P. J. Barry;
Christopher P. J. Barry
Institute for Nonlinear Science, University of California, San Diego
Search for other works by this author on:
Michael D. Perry
Michael D. Perry
National Laboratory, Livermore, California
Search for other works by this author on:
Physics Today 51 (1), 22–28 (1998);
Citation
Gérard A. Mourou, Christopher P. J. Barry, Michael D. Perry; Ultrahigh‐Intensity Lasers: Physics of the Extreme on a Tabletop. Physics Today 1 January 1998; 51 (1): 22–28. https://doi.org/10.1063/1.882131
Download citation file:
Citing articles via
A health sensor powered by sweat
Alex Lopatka
Origami-inspired robot folds into more than 1000 shapes
Jennifer Sieben
Careers by the numbers
Richard J. Fitzgerald