After Theodore Maiman’s demonstration of the laser in 1960, researchers quickly discovered that tightly focused laser pulses generated a bright spark of ionized air. The initial reports caught the physics community off guard; in the words of an early researcher, C. Grey Morgan, a “flash of laser light can set the air on fire!” Because each laser photon didn’t have enough energy to knock an electron off an air molecule, it should have been impossible for the laser to ionize the air directly. Eventually, researchers realized that the extremely high electric fields at the laser’s focus were driving an electron avalanche breakdown, an already well-known process using high static fields and high-power microwaves.

An initial population of free electrons gains energy by acceleration in the laser field, ionizing other molecules in a cascading, exponential process. The source of the initial population of electrons was a mystery, however, and it spurred...

You do not currently have access to this content.