Certain members of the class of crystalline materials known as perovskites have recently shown great promise for optoelectronic applications. Perovskites have the chemical formula ABX3, where A and B are cations and X is an anion, arranged as shown on page 22. Crystals that combine an organic cation, lead as the second cation, and a halogen anion make for solar cells of remarkably high efficiency despite rather modest charge-carrier mobilities (see Physics Today, May 2014, page 13). Yet the nature and fate of the photoexcited charge carriers remain little understood. A Swiss team led by Majed Chergui of the Swiss Federal Institute of Technology in Lausanne has now peeled back some of that mystery. With time-resolved x-ray absorption spectroscopy, the researchers studied two inorganic perovskites—CsPbBr3 and CsPb(ClxBr1–x)3— at the Swiss Light Source. By tuning the energy of...
Skip Nav Destination
Article navigation
1 March 2017
March 01 2017
Watching perovskite photoexcitations, atom by atom
Richard J. Fitzgerald
Physics Today 70 (3), 21–22 (2017);
Citation
Richard J. Fitzgerald; Watching perovskite photoexcitations, atom by atom. Physics Today 1 March 2017; 70 (3): 21–22. https://doi.org/10.1063/PT.3.3486
Download citation file:
PERSONAL SUBSCRIPTION
Purchase an annual subscription for $25. A subscription grants you access to all of Physics Today's current and backfile content.
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
385
Views
Citing articles via
The no-cloning theorem
William K. Wootters; Wojciech H. Zurek
Dense crowds follow their own rules
Johanna L. Miller
Focus on software, data acquisition, and instrumentation
Andreas Mandelis