Picking out a signal from a sea of noise is a ubiquitous research challenge. If the signal recurs, multiple measurements can be appropriately averaged to improve the signal-to-noise ratio. For a single transient event, Fourier decomposition—breaking the signal down into its frequency components—can help isolate signal from noise. The signal’s frequency components are correlated in phase with each other, whereas those of the noise are not. When the components are summed as complex numbers that encode phase and amplitude, only the signal adds up coherently. Calculating the Fourier transform works well enough for slow signals lasting a few microseconds, but faster signals run up against the resolution limits of both detectors and analog-to-digital converters. Now a University of California, San Diego, group led by Stojan Radic has employed tunable optical frequency combs, developed in Radic’s lab, to catch those faster signals. (For more on frequency combs, see Physics Today,...
Skip Nav Destination
Article navigation
1 March 2016
March 01 2016
Citation
Sung Chang; Combing for a signal buried in noise. Physics Today 1 March 2016; 69 (3): 21. https://doi.org/10.1063/PT.3.3101
Download citation file:
PERSONAL SUBSCRIPTION
Purchase an annual subscription for $25. A subscription grants you access to all of Physics Today's current and backfile content.
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
78
Views
Citing articles via
The no-cloning theorem
William K. Wootters; Wojciech H. Zurek
Dense crowds follow their own rules
Johanna L. Miller
Focus on software, data acquisition, and instrumentation
Andreas Mandelis