Understanding the dynamics of immiscible fluids is critical for a wide variety of applications, but imaging their flows is notoriously difficult. Most conventional techniques are intrusive—introducing tracer particles, for example—or require optical access. Magnetic resonance imaging (MRI) is an attractive alternative: It can quantitatively map velocity distributions and is inherently sensitive to different molecular species. But as usually implemented, MRI is slow, and schemes to reduce data acquisition times can introduce artifacts if multiple chemical species are present. The use of MRI for multiphase flows, which can exhibit such transient phenomena as shape oscillations and vortex formation, has thus been limited. Now Andy Sederman, Lynn Gladden, and colleagues at the University of Cambridge have demonstrated a way to obtain high-speed MRI images that clearly differentiate between chemical species in immiscible fluid flow. They adapted a sophisticated mathematical trick, compressed sensing, in such a way that when combined with a fast...
Skip Nav Destination
Article navigation
1 August 2014
August 01 2014
Citation
Richard J. Fitzgerald; Ultrafast MRI of immiscible fluids. Physics Today 1 August 2014; 67 (8): 19. https://doi.org/10.1063/PT.3.2472
Download citation file:
PERSONAL SUBSCRIPTION
Purchase an annual subscription for $25. A subscription grants you access to all of Physics Today's current and backfile content.
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
44
Views
Citing articles via
France’s Oppenheimer
William Sweet
Making qubits from magnetic molecules
Stephen Hill
Learning to see gravitational lenses
Sebastian Fernandez-Mulligan